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ABSTRACT

The Naval Postgraduate School has been conducting research into the design
and testing of an Autonomous Underwater Vehicle. One facet of this research is to
incrementally design a software architecture and implement it in an advanced
testbed, the AUV II. As part of the high level architecture, 8 Mission Executor is
being constructed using NASA’s CLIPS version 5.0. The Mission Executor is an
expert system designed to oversee progress from the AUV launch point to a goal area
and back to the origin. Itis expected that the Executor will make informed decisions
about the mission, taking into account the navigational path, the vehicle subsystems
health, and the sea environment, as well as the specific mission profile which is
downloaded from an offboard mission planner. Heuristics for maneuvering,
avoidance of uncharted obstacles, waypoint navigation, and reaction to emergencies
(essentially the expert knowledge of a submarine captain) are required. The Mission
Executor prototype, SKIPPER, attempts to do this through the use of a three-tiered
reasoning system which monitors overall mission status, functional area status, and
vehicle equipment status simultaneously.
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I. INTRODUCTION

A. BACKGROUND
The development of autonomous underwater vehicles has been an ambition for
decades. Only recently, however, have practical autonomous underwater vehicles appeared
to be reality. Since the development of SPURYV I (one of the first autonomous underwater
vehicles in the United States) at the University of Washington’s Applied Physics
Laboratory in 1963, government and civil interest has been fueled by the potential for
many applications (Busby 90, p. 65). The hope is that the control system for the vehicle
will adequately perform the man-machine interaction that regularly takes place on manned
submersibles. Military interest over the last decade has increased, particularly with the
advent of tactical automated weapons and air reconnaissance vehicles. Recent events in
the Gulf War have validated the advances in automated weapons during the 1980’s. As
Vice Admiral Stanley Arthur, Commander U. S. Naval Forces Central Command during
Operation Desert Storm, remarked (on Tomahawk cruise missile system effectiveness):
... target-arrival percentages look good. When dealing with a system such as
Tomahawk, all the details can be planned carefully. Then when the missile is fired,
the electronic gizmos take over. These integrated circuits do not get scared; they do
not forget; they follow orders well. The critics—who said Tomahawk would work
only on a single test range and that it would get lost in the desert--were wrong.

News reports seem to support the idea that attacks by robots have a unique
psychological effect on people. (Arthur, 1991, pp. 85-86)




On the effectiveness of the remotely piloted vehicle, Pioneer I, Vice Admiral Arthur
also observed:

Remotely piloted vehicles proved to be marvelous, versatile devices. They allowed
the battleships to attack the enemy on their own, without the need for outside
assistance in spotting. Spotting by the RPV’s not only allowed for accurate naval
gunfire support, but also provided instant battle damage assessment. The RPV
offers quick response and flexibility, because it is under positive tactical control and
has the ability to get below a low ceiling. Of course, the highlight of the war for
the RPV has to be the incident in which a remotely piloted vehicle flew over Iragi
troops. By that time, the Iragis knew what would be coming next, so they
surrendered to the RPV--presumably the first occasion in the history of warfare for
human beings to capitulate to a robot. (Arthur 1991, p. 86)

Several marine autonomous and remotely-piloted vehicles are already in use for
such diverse functions as underwater cable inspection, hydrography, and mine-hunting.
The practical advantage of low-risk to human operators coupled with the potential ability
to operate at over-the-horizon distances make the autonomous underwater vehicle a higialy
desirable project. Although development of autonomous underwater vehicles has
progressed more slowly than the well-publicized air and land vehicles, advances during
the 1980’s in artificial intelligence and robotics have proven to be monumental. As a
consequence, the Defense Advanced Research Projects Agency (DARPA) has been the
primary major funding source for the evolutionary advances made during the last decade.
(Polmar, 1991, pp. 122-123). Early research in autonomous underwater vehicles at the
Naval Postgraduate School centered around computer and control surface interfaces tested
in the first testbed, Autonomous Underwater Vehicle I (AUV 1), a tele-operated

underwater robot. Efforts since that testing ended have focussed on an entirely

autonomous vehicle, Autonomous Underwater Vehicle II (AUV II).




Previous student theses at the Naval Postgraduate School have primarily
concentrated on the use of artificial intelligence in mission-planning and guidance control
of the vehicle. Cloutier investigated and developed a vehicle Guidance subsystem. His
subsystem provides fora proper vehicle configuration for path following from waypoint
to waypoint (Cloutier 1990). Ong researched and developed an extensive offboard
Mission Planmng expert system. This was incorporated into an advanced simulator
developed previously (Ong 1990). MacPherson studied rule-based control of an AUV.
He implemented this control system in a simulator written in LISP under the Knowledge
Engineering Environment (KEE). Generic mission templates were developed for various
specialized mission profiles (MacPherson 1988).

The current generation of student theses attempts to take the development of an
intelligent control system for the AUV into the next increment of evolution. The baseline
diagram of the projected software system is depicted in Figure 1-1. Both intermediate
level modules (such as the pattern recognition and navigation software) and high-level
modules such as the mission planner/replanner and mission executor are now in
development. Central to the high-level control is the Mission Executor described in the
next section. An advanced decisionmaking capability is needed to make an autonomous
underwater vehicle (AUV) truly adaptive and survivable. The noted naval analyst
Norman Polmar recently surveyed the current advances and underscored the demand for

intelligent capability in vehicle technologies :
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The key to success in all the testing will be component or "enabling” technologies:
navigation, composite hull materials, guidance, energy source, propulsion,
communication links, and signal processing as well as the specific mission
packages. Advanced autonomous underwater vehicles will require enhanced sensor
and decision-making capability. (Polmar 1991, p. 123)

B. MISSION EXECUTION EXPERT SYSTEM

The control architecture of AUV II has undergone several phases of development.
Many methods of autonomous control are being used in vehicle testbeds around the
country. Some allow for layering of control in the vehicle while others maintain a more
traditional horizontal model of planning, execution and analysis. One general architecture
that has recently come of age is top-down flow of control ranging from Strategic level
control through tactical level to the low-level monitoring level (the level at which vehicle
software and hardware actually interface). Higher levels of abstraction perform some of
the activities (some time-sensitive) which require measured decision-making.

The Naval Postgraduate School’s AUV control structure has undergone an
evolutionary development. Control in AUV I and early control structures in AUV II was
essentially low level closed-loop. Incremental changes to the software design in 1990
necessitated the integration of a Mission Executor to integrate and coordinate intelligent
waypoint following and obstacle-avoidance. The Mission Executor functions involve
continuous real-time analysis and high-level supervision of vehicle systems throughout
the life of a mission. Thus the Executor must make real-time decisions, often in an
environment of uncertainty or incomplete knowledge (Healy 1990a, pp. 177-183). While

not all situations can be completely provided for in the system, the ambition is to design




heuristics which make it possible for the Executor to deal with extensions of well-known
problems.

C. SCOPE OF THESIS

The Mission Executor, in the broadest sense, must be able to safely control
movemcntbetweenamissionmrﬁngpointuﬂamissiongouhlndoinglo,itniuu
operate between three models: that of the mission world, the vehicle world and the
environmental world. To supervise the vehicle world suggests that the Executor must
monitor and control vehicle "health” such as battery state, internal system pressure, and
temperature. It must also provide for response to deteriorating condition of the vehicle
sonar, navigation system, or guidance systems. The loss of a major onboard equipment
such as the sonar or navigation systems would probably be catastrophic and would at least
result in a mission degradation. The Executor must supervise the subsystem recovery
procedure or make decisions that can circumvent the problem. Failing that it must make
a strategic-level decision to abort the mission.

Control of the vehicle in the context of the environmental world means reaction to
topological features such as undersea terrain and obstacles (both moving and non-
moving), a significant change in atmospheric conditions, or any external threat which
would physically hinder the vehicle from making the transit to the goal point.

Monitoring of the mission world entails awareness of transition points between
normal transit and beginning a special mission profile. Possible speed/depth changes,

special requirements for inshore navigation, and deployment of any equipment must be




considered. Most importantly, the mission priority must be balanced against vehicle
survival and reusability. Heuristics for this must be incorporated in the software.

D. THESIS ORGANIZATION

Chapter II is a survey of previous work on AUV control systems and related
technology. Current AUV software control systems at many different research facilities
are discussed. AUV research is classified by the types of software architecture.

Chapter Il is a feasibility study of using the C Language Integrated Production
System (CLIPS) version 5.0 expert system tool as the development environment for the
Mission Executor. This chapter also includes analysis of the portability of CLIPS to
GESPAC, the AUV II’s onboard computer.

Chapter IV is a description of onboard information processing. It details the
interactions between various modules of the software architecture outlined in the baseline
diagram, Figure 1-1.

Chapter V is a description of the prototype expert system architecture from a
theoretical stance. The development of layers of reasoning in software is highlighted.
Issues such as the proper combination of rules and objects, the role of uncertainty and
truth maintenance, and knowledge-database object persistence are discussed in the context
of the Autonomous Underwater Vehicle. Specific software constructs are left to Chapter

VL




Chapter VI is a description of both the Mission Executor constructs and the
Executor simulation. Rules which incorporate some special complexity or feature are
described in detail.

Chapter VII outlines contributions, conclusions and extensions for further work.
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IL CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES
This chapter is an overview of Autonomous Vehicle high-level control
development at other institutions and commercial organizations. The various autonomous
vehicle programs are classified by software architecture. Differences and similarities to
the Naval Postgraduate School’s testbed AUV Il are discussed in the concluding

summary.

A. LAYERED CONTROL ARCHITECTURE

1. Massachusetts Institute of Technology Sea Grant Program

Bellingham and Consi of the Massachusetts Institute of Technology have been
at the forefront of AUV research for the last several years. The MIT program has worked
with Charles Stark Draper Laboratories and International Submarine Engineering on the
development of Sea Squirt I (Bellingham 1990, p. 23). This platform uses a Motorola
68020 processor. MIT Sea Grant is implementing a software architecture based on
Brook’s Iayered control architecture (Brooks 1986, pp. 365-372). This architecture is
behavior-oriented, using the subsumption approach. The objective is to move away from
the traditional robot architectures which require a world model be incorporated. This is
due to the AUV compaction problem: a small submersible cannot support high-resolution
sonar or an extensive, intelligent vision system. Consi and Bellingham argue that the
world model is then severely flawed, which may lead to incorrect or conflicting behaviors
(Bellingham 1990, pp. 23-24). In the mbsmnpﬁ model, high-level behaviors include




planning and monitoring while lower level behaviors are oriented toward the reflexive
states. The software development itself is intriguing. Low-order behaviors are first
installed and verified in the testbed. When satisfactory performance is achieved, the next
level of complex behaviors is then added. Abstractly, the lower level is subsumed by the
higher level, but nonetheless carries out its behaviors in real-time. The architecture is
designed to be reconfigurable for different missions. (Bellingham 1990, pp. 24,27)

Despite an initial retreat from the world model paradigm, the MIT group
believes it might be useful in complex missions to incorporate world modeling into high
layers. This would free lower levels to continue to operate in real-time as they must.
The overall architecture will become distributed for sensor processing. (Bellingham 1990a,
pp. 75-78) A diagram of the basic behavior layering is shown in Figure 2-1.

2. International Submarine Engineering (ISE)

International Submarine Engineering (ISE) is currently cooperating with MIT
on the Sea Squirt research. International Submarine has previously developed several
software architectures for its series of ARCS underwater vehicles (Zheng 1990, p. 71).
Original work focussed on a software architecture based on the Navy watch team concept
of functionality. Control was based on the Cooperating Experts Paradigm, in which
separate modules for piloting, independent transit and collision avoidance all worked to
form a fused plan. After much experimentation, this was discarded as infeasible because
module functionality did not always correspond well to the many tasks that even one

human carried out. Further decomposition was necessary.
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Figure 2-1. MIT’s Layered Control Architecture
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ISE’s new architecture is object-oriented and behavior-oriented, based upon
Brook’s seminal layered control architecture of the mid-1980°s. ISE incorporates rule-
based heuristics and learning through reflexive behaviors, logical behaviors and learned
behaviors.

3. The Analytic Sciences Corporation/ Naval Underwater
Systems Center

The Analytic Sciences Corporation (TASC) and the Naval Underwater Systems
Center (NUSC) have developed a novel software architecture which combines aspects of
real-time layering, functional decomposition and subsumption. It is a new structuring of
the traditional perception, analysis and action paradigm of robotic software. The software
architecture is being implemented in C++. (Schudy 1990, p. 9)

Unlike the division of functions in the Intelligent Mobile Autonomous System
(IMAS) in which each level carries a similar structure for conflict-resolver, world model
and level-specific function, the division of tasks in the NUSC/TASC architecture is non-
homogeneous both horizontally and vertically. It is divided horizontally into an analysis
hierarchy which is composed vertically of increasingly competent levels of assessment.
The bottom level is real-time while the event assessment at the highest level is decidedly
non-real-time. This hierarchy at each level functions as effectors for the tightly-coupled
planning and supervision sections of the Task Decomposition hierarchy. The planning
section consists in the levels of mission planning (highest), phase planning, task planning,
and action planning (lowest level). The supervision functional section is divided into

mission level plan execution (highest), phase level plan execution, task execution, and
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subsystem supervision (lowest). Positioned between the analysis and planning areas is

a response system in which responses are merged and subsumption of behaviors occurs.
These hierarchies are separated from the low-level functions of sensory data, internal
monritoring and guidance control. (Schudy 1990, pp. 10-14) This is depicted in Figure
2.2.

Rather than just consider the division of function by functional level, there is
also decomposition by time. Real-time control only encompasses the lower levels,
monitoring and control in the most atomic sense and the planning/assessment that is one
level above that. The actual flow of control is very evident. The advantages of such a
system are that mission execution can be monitored at a high rate for low level behaviors
while, as in layered control, the high level behaviors such as planning and global
assessment are done at a less time-constrained rate. (Schudy 1990, pp. 13-14)

Unlike the strict layered control hierarchy, this system maintains a detailed
world model which consists of a vehicle internal model, an environmental model, and a
event assessment model. Like the layered control hierarchy, there is subsumption. Rather
than describing it in terms of competent behaviors, it is described in terms of assessment
and response. Assessment modules describe behavior in mathematical models (Schudy
1990, pp. 14-16). Response modules are intermediate to the planning modules and
incorporate behavioral alternatives.

Mission execution is carefully supervised by an overall mission execution
manager. In one sense, the overall mission execution manager is nothing more than a

high-level sequencer. The mission execution manager in turn supervises phase execution
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Figure 2-2. TASC/NUSC AUV Software Architecture




managers. Phase execution managers have responsibility for monitoring an entire phase
of the mission. These are intermediate mission executors which oversee the task
execution managers. In naval terms, the task execution manager can be described as a
special detail. It is the task execution manager’s responsibility to ensure that a special
evolution such as turning at a waypoint is carried out. Further, the task execution
manager monitors a subsystem manager for each of the following environmental sensing,
navigation, guidance, communication and energy. (Schudy 1990, pp. 18-20) This software
architecture is one of the few to specifically mention mission execution as a high-level
control activity.
4. Marine Systems Engineering Laboratory

Marine Systems Engineering Laboratory at the University of New Hampshire
has been involved in AUV research for over fourteen years. The first underwater
autonomous vehicle developed was EAVE I (Experimental Autonomous VEhicle I) which
was completed in 1978. It was designed for cleaning underwater pipelines. In 1986,
MSEL was given a charter to develop knowledge-based AUV’s which could render
complex decisions and operate independently. (Thus, the acronym for EAVE became
KB/EAVE.) EAVE is a larger class of AUV than the NPS AUV II (and similar small
AUV’s) which is hardware-intensive: resident onboard are three Motorola 68000
processors for the lower level and VME 68020’s for the higher level decision making.
Lowest level control, guidance and monitoring functions are carried out in the lower level

68000 processors. (Blidberg 1990, pp. 33-34)

15




Although the upper and lower levels of decision-making are coupled, MSEL
designed the lower level to be stand-alone in the event that strata independence was
necessary. - The design of the KB/EAVE software syswh for the EAVE Il generation of
vehicles is structured around data that is transformed from raw sensory output eventually
to knowledge for complex decision-making. This is achieved through functional layering.
Mission functions reside at the highest level while control functions are at the lowest
level. This design is not wholly hierarchical in the sense that each level is divided
horizontally into data manipulation on one side and control on the other. This design is
depicted in Figure 2-3. The hierarchical division is based on time constraints. As in
many of the control architectures, the notion is to give the planning and assessment
functions more time while requiring guidance and direction motion control to operate
quickly. (Blidberg 1990, pp. 35-36)

The lowest level reads and controls sensors and activates control surfaces. In
the next higher level, the system level receives packaged data from the lowest level and
generates intermediate Ievel commands. The environment level (just above) performs
navigation functions and planning based on goals reccived from the mission (highest)
level. This level performs the tasking and uses the state of the vehicle at the environment
level to generate high-level plans. A philosophy that the system can artificially evolve
has prompted MSEL to attempt to build and test the lower level before it proceeds to the
next highest level (Blidberg 1990, pp. 36-37). This is similar in concept to construction

in Brooks’s layered control architecture.
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The decision-making software in the higher levels uses what is known as
schema-based reasoning developed by Tumer of the University of New Hampshire MSEL
group. These schema are essentially templates of reasoning and behavior which cover
such areas as reaction to critical situations, development and consideration of plans and
focus of attention (Blidberg 1990, pp. 39-41).

The MSEL KB/EAVE software development also involves using the Portable
Common LISP Subset or PCLS. The effort to find a portable object-oriented LISP subset
was based on a need to find a programming environment that was independent of
hardware layout. While the C language is being used for numerically-intensive tasks such
as sensor data processing and guidance tasks in the two lower levels, intermediate and
high-level functions are targeted for development in PCLS. Part of the world model
(navigation/situation assessment level) is already functioning in the testbed. PCLS works
well because it does not have the temporal overhead usually associated with LISP. MSEL

describes it as "garbage collection compaction. " (Bowen 1990, pp. 221-226)

B. HIERARCHICAL CONTROL

1. Intelligent Mobile Autonomous System (IMAS)
Meystel of the Laboratory of Applied Machine Intelligence and Robotics
(LAMIR) of Drexel University and Isik of Syracuse University of have developed a
hierarchical model of control for a terrestrial robot vehicle under development for the
Belvoir Army Research and Development Engineering Center (Isik 1990, pp. 241-242).

Although this involves a wheeled surface vehicle with a vision sensor system, the Nest
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Hierarchical Control paradigm is applicable for subsea autonomous robots with sound

ranging sensors. It provides both sufficient redundancy and layering of automated
reasoning, as the following description and Figure 2-4 suggest.

The software is divided hierarchically into the planner, navigator, pilot, and
actuator/controller levels. Each level has its own separate sensor bank for perception, a
map for world model reasoning, and a reporter for intelligent control. The functional unit
itself (planner, navigator, pilot and actuator/controller) has its own database, rulebase and
evalvator. Each stratum has a different level of resolution for its sensors. Data conflicts
are resolved via what is known as resolution relevance. The Reporter module in each
stratum performs the conflict resolution. (Isik 1990, p. 242)

The rule base is modeled as a production system. Fuzzy set theory is used in
the controllers to describe relationships and control actions within and outside of the
vehicle. The global view of the environment via the vision system is used in the top two
layers while the Pilot level uses a local or "windshield” view to guide the vehicle along
the planned path (Isik 1990, p. 242-243).

2. SINTEF SACOR Project

SINTEF Automatic Control of Trondheim, Norway has developed several
robotic vehicles over the past several years. The current vehicle being used is the
SPRINT 101, a tethered vehicle. This is a data-autonomous vehicle with six sonars which

receives power via an umbilical cable. The software resides on a 68020 processor.
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SACOR is an acronym for Software for Autonomous Control of ROV90. Software is

being developed in C++ and currently resides on SUN workstations (Rodseth 1990, pp.
15-18).

SACOR is actually a software design in two parts. The administrative section,
known as ASACS (Administrative System for AUV Control Software), sequences and
controls the flow of data in the system. The software is object-oriented. Modules, which
are abstracted behind data structures, cannot communicate directly. They must pass data
through strict interfaces. This is principally the object-oriented paradigm. ASACS is
essentially a hierarchical system. The database controller interfaces modules to state
variables. Progress in status is compared to desired goals. An event handler generates
an object for each event and schedules it for transport to the correct module. A
monitoring unit known as the Watchdog conducts error checking of vehicle internals and
navigational progress. The Captain module is a simple sequencer for the mission plan.
The plan itself is a hierarchical structure of state variables and conditions under which
they are activated (Rodseth 1990, pp. 15-17). The dataflow and control is diagrammed
in Figure 2-5.

Modules are cither update or action modules. Action modules channel
commands from the highest levels down. Modules on lower levels outweigh those in
higher levels. (Presumably this is because lower level modules are real-time directors of
action.) New goals are developed through plan conflict resolution. Update modules
provide information from sensors attached to actuators and may direct action across a

range of state variables (Rodseth 1990, pp. 18-20). Rodseth’s description of the current
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implementation indicates that this software is not yet mature. Navigation is conducted

by a dead-reckoning device rather than a combination of dead-reckoning and sonar
comparisons as in the NPS AUV II. Speed, heading and depth can be controlled. A
waypoint determination module allows for computation of the speed and heading to gain
the next waypoint.

It is interesting to note that SINTEF project designers have noted for possible
future work the development and integration of an intelligent captain which could reason
about decisions and an intelligent watchdog for the vehicle internals (Rodseth 1990, p.
23). This is essentially the idea of a Mission Executor as outlined by the Naval

Postgraduate School.

C. HYBRID MODELS

1.  University of Karisruhe Robot Project

Rembold and Levi have been directing research at the University of Karlsruhe,
Germany into the control of autonomous vehicles with the 4-wheeled MOBILE ROBOT
(Rembold 1986, pp. 79-80). They partition the control modules into a world processor,
the planning and execution processor, and sensor processor. Rather than a pure vertical
or horizontal hierarchy, Rembold and Levi describe their flow of execution as a hybrid
of both. The real world model and the sensor module cooperate in providing the
interpretation of sensory output and in storing the vehicle internal world. The planning

and execution processor allows for comparison of a real-world scenario with the current




scenario o determine the action to be given to lower levels of guidance and control. The
decision-making framework is a hierarchical, almost tree-like rule-based structure
(Rembold 1986, pp. 80-83).

Levi and Rembold also require the software control system to do a limited
amount of learning and to operate with incomplete information. MOBILE ROBOT must
operate in an industrial eavironment and thus must be able not only to transit to the
desired work area, but also to perform assembly tasks. (Because only the first mission
is relevant to AUV at this point, only the transit execution will be covered.) The world
model which MOBILE ROBOT depends upon has both static fixed obstacles and moving
obstacles (Rembold 1986, pp. 81-84).

The vehicle planning and execution is carried out by a hierarchical control
system very nearly like Isik’s and Meystel’s three-tier hierarchical control model.
Command flow and gencration are executed in the classic waterfall method. A global
path plan and executor is responsible for the highest levels of decision-making and
adaptation. An expert system at the highest level determines the route using a cube-based
representation of free-space. The global path planner must transform parameters of
decisions based on the overall route, obstacles or obstructions, and path constraints
(percentage deviation allowed for various missions) into cartesian coordinates through an
intermediate sequencer. This in tum passes the geometric coordinates to the Navigator
expert system module which must control and interpret sensory output for navigation and
recognition of various obstructions and provide adaptability strategies for local deviations
0 the path. Canesian coordinates are translated to vehicle subsystem actions which are
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in tum passed to the pilot level (which corresponds to the NPS guidance level). An
expert system actually coordinates vehicle actions at this level to avoid contradictory

guidance system actions (Rembold 1986, p. 85). The software architecture is shown in
Figure 2-6.
2, Procedural Expert System (Esprit Project)

Procedural expert systems are the object of this cooperative research between
the University of Amsterdam and Framentec of Paris on an industrial robot (Meijer 1990,
p- 65). Essentially what has been constructed is a mission executor. Meijer and his
colleagues have constructed a model known as the Exception Handling Model. A stack
structure is used to store the current operations that the robot is performing. The
operations that the robot can perform are classified according to complexity. As with any
robotic application, planning and initial scheduling is conducted offboard the robot.
Adaptive scheduling is generally required, as well as generation of recovery plans, to deal
with any interruption to the preplanned operations (Meijer 1989, pp. 65-66).

The Exception Handling Model attempts to achieve the planned behavior and
provides a series of prioritized strategies for recovery. Like many other robot models, it
structures them in heuristics around the general functions of monitoring, diagnosis and
response in a loose hierarchy. Fault trees are used in the diagnosis part to trace a
component failure. Recovery plans are generated from this. Each possible strategy is
checked for feasibility. The system will default to a rescheduling mechanism if recovery
with the current goals is not possible (Meijer 1989, pp. 66-67).
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Figure 2-6. Software Control in the Karisruhe Robot
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The Procedural Expert System itself is programmed in LISP and consists of
a knowledge-base which contains the vehicle and environmental model states and the so-
called Knowledge Area. These are essentially structures similar to rules which have
prerequisite facts that make up an interface. These have associated with them some type
of procedural code. This is the Procedural Expert System’s method of encapsulating
general plans and domain-specific plans. It is very nearly a paradigm of polymorphism.
A structure similar to an inference engine selects the Knowledge Area to be executed
depending on its facts being resident in the knowledge brse. Goal-achieving Knowledge
Areas can essentially invoke one another in a fashion similar to the classic forward-
chaining mechanism of rule-based systems. Constraint-based backtracking is available
to assist in truth maintenance for the knowledge-base (Meijer 1989, pp. 70-75).

Exception-handling is structured into knowledge areas specifically designed for
that purpose. These invoke the regular task achieving knowledge areas (Meijer 1989, pp.
70-7S). Although stack - Kuawledge} Area interaction is not explained in detail, there is
mention of pursuing new goals should that become necessary. In that case, the next
available goal would be removed from the stack for activation. Tasks have a hierarchical
flavor, yet the underlying reasoning is not developed into a true hicrarchical software

architecture.

D. SUMMARY AND EVALUATION
This limited survey of AUV software architectures indicates that there is some

conceptual agreement in architecture but wide division in implementation. Rule-based
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systems are popular, but are implemented in different fashions. Subsumption is part of
several architectures, yet it is not effected in the manner that Brooks originally devised.
The TASC/NUSC model is most similar to NPS AUV II in terms of Mission Executor
design. However, the TASC/NUSC model makes a further division for task execution
managers which the NPS model does not. The TASC/NUSC model implies that there is
an object or module to monitor each of the critical evolutions. SINTEF Corporation’s .
object-oriented AUV model, SACOR, has similarities to the NPS AUV II, but it assumes
a more distributed mission executor. Actually, there is no distinct module known as the
executor in SACOR. Most of this functionality is derivable from the Watchdog and
Captain modules. Unfortunately, the Captain module is merely a sequencer with no
intelligence, heuristic or otherwise (although intelligence is planned for possible
incorporation as the project matures).

The layered hierarchical control models, while presenting a non-traditional approach
to robotics architecture, present a very credible method of testing software. While all
rescarchers may not agree on Brooks's subsumption of behaviors model, the incremental
addition and verification of the software is currently being carried out in AUV IL
Division of decision-making and control in AUV II is evident in only two explicit layers.
Implicitly, the navigation module, pattern recognition software, vehicle condition
monitoring module, and guidance module are all in an intermediate level. Thus, one
might be able to infer that the hierarchical models might be closest in design to AUV II. ’
Most of these, however, have software redundancy in each layer as Isik and Meystel's
Intelligent Mobile Autonomous System (IMAS) does. The NPS AUV I sofiware
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architecture would best fit in the hybrid category. It is not strictly hierarchical nor is it

a layered control/subsumption model. Clearly, it is not the traditional horizontal model.
The current implementation of the Mission Executor (as later explained) is situation-event
based. Combining this aspect with the hierarchical structure, one must conclude that the

NPS AUV II software is a new variety of the hybrid model.
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III. THE C LANGUAGE INTEGRATED PRODUCTION SYSTEM
This chapter provides an overview of the C Language Integrated Production
System (CLIPS) and the arguments for its use as the ongoing tool for construction and
extension of the Mission Executor of the Autonomous Underwater Vehicle in both

simulation and the actual testbed, AUV IL

A. MAIN FEATURES

CLIPS was developed to meet the need for a low-cost, portable, rapid prototyping
tool which could be used in the construction of both real-time and non-real-time systems.
The effort was begun in 1985 at the NASA Johnson Space Center with construction of
a prototype. The intent of the design was for CLIPS to mimic features of both the
Automated Reasoning Tool (ART), the List Processing (LISP) language and Official
Production System 5 (OPS5). The Software Technology Branch at NASA was essentially
successful in this venture. CLIPS version 3.0, the first to be released to users outside of
NASA, was distributed in 1986. Since that time, the expert system has undergone several
revisions. CLIPS is a forward-chaining, rule-based tool which, like the production systems
it is based on, uses the Rete algorithm for pattern matching and inferencing. (NASA 1991,
Pp. xiii-xiv)

CLIPS rules are generally constructed of facts in the relation-attribute and associated
value form on the left side of the production arrow ( => ). The asserted facts which are
produced are placed on the right-hand side. Figure 3-1 depicts a sample defrule which
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may be found in the Mission Executor system. Facts may have constraints placed on

their values. Logic expressions such as conjunction, disjunction and negation (in the form
of and, or, not) may also be attached to them. CLIPS allows for efficient pattern-
matching on variables on the left-hand side. Procedural statements such as If...then...clse
and while-loops are available. Truth maintenance is available through the use of the
logical construct to assert a fact (or facts) which has a dependency. Retraction of one of
the original left-hand side facts removes the support for that assertion. This is illustrated
in Figure 3-2. A substantial numeric function library is available for logical comparison,
some conversions of standard units to others (degrees to radians and vice-versa), and
special numeric evaluations. CLIPS input and output (I/O) is very similar to LISP and
the Common LISP Object System (CLOS). Formatted input and output is nearly identical
to LISP. (NASA 1991, pp. 5-47)

Earlier versions of CLIPS did not include any object orientation or user-defined
functions. User-defined functions had to be written in the source language. Version 5.0
now includes the CLIPS Object Orieﬁted Language (COOL) which exhibits properties of
both SmallTalk and CLOS, and user-defined functions. It supports a frame hierarchy of
classes and objects. Presently it only supports specialization inheritance (although there
is a way to emulate generalization). Like other object-oriented systems, CLIPS 5.0
provides inheritance and strict interfaces (message-handlers) for accessing the data in
objects. Procedural constructs such as daemons may be attached to objects and fire upon

basic actions such as initialization or modification of slots in an object. Impressive
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(defrule monitor-battery

(action monitor)

(current-time 2time&:(> 2time ?*guardline*))

(assert (battery  time-critical))

(assert ( guidance  shift-power-source)))

- This rule is typical of an automated control-type rule
- Mtime is a constrained variable. This rule will only fire if

2time is greater than the global variable ?*guardline®,
which must be elaborated at run time.

- On the right-hand side, two facts are asserted. The
second one is typical of a control fact. It causes another
module to execute another rule (semantically-linked).

Figure3-1. A Sample CLIPS Rule
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(defrule Continue_unrestricted

(logical (equipment_status  normal)

within_tolerance)

(navigation_status

(manecuvering_status normal)

(spec_mission_status feasible)

(enviornment_status normal))

=>

(assert (overall_mission_status Continue_unrestricted)))

If any of the five facts on the left-hand side are retracted, the
consequent overall_mission_status will also be retracted.

Figure 3-2.  Use of the CLIPS Truth Maintenance Construct
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polymorphism allows even a casual programmer to create a defmethod which will operate
differently when presented with arguments of different types. (NASA 1991, pp. 5-18)

Efficiency in CLIPS is due primarily to the use of the Rete Algorithm. A recent
synthetic benchmark conducted by Mettrey at Bell-Northern Research demonstrated that
systems using the Rete Algorithm were substantially more efficient and faster than their
competitors which used a different pattern matching scheme. Writing conditions that
specify a rule is instantiated only if a pattern cannot be matched by any fact in the
knowledge base is a powerful feature of the Rete-based tools. Temporal redundancy, a
common characteristic of knowledge-based systems, is used to great advantage by Rete-
based tools. Rete saves repetitive information on nodes and propagates only changes, thus
increasing efficiency. (Mettrey, 1991, pp. 19,30)

In addition to low cost, CLIPS has been designed with a great deal of flexibility.
It has many features of more expensive tools, including the following:

e CLIPS does not require the entire environment to be available on the operating
system 10 run an application. Executable modules can be created which allow
econmomical delivery of the application. (Riley 1987, pp. 33-40)

» CLIPS is portable to any environment supporting a C compiler.

e Seven different conflict resolution strategies are available rather than just
depth-first-search. (NASA 1991, pp. 28-31)

CLIPS’s only apparent weakness is an absence of pattern-matching on the left-

hand side for objects in CLIPS Object Oriented Language (COOL). Some NASA




programmers readily admit that this is an impediment in some applications. On the

other hand, there are work-around solutions to this.

B. DEVELOPING CONTROL EXPERT SYSTEMS IN CLIPS

The need for a low-cost tool such as CLIPS is evident by its widespread use in
the government, commercial, and academic communities and by the proliferation of
software systems constructed in CLIPS since it was first released. A recent advisory
released by the NASA-Johnson Space Center indicated that over 3000 users are
programming in CLIPS (NASA 1991, p. xiv). The range of applications has included
robot control expert systems, advisory systems, intelligent tutoring systems and
numerous embedded applications. As this research is primarily directed at high-level
control, & small sample of some of the control applications completed or in development
follows.

Case Western Reserve University’s Center for Automation and Intelligent Systems
Research developed a model-based space station autonomous power control system in
1988. The simple model used, essentially a terrestrial one, requires the power control
system to dynamically schedule many power loads for a station with but a single power
source. Three phases of power control are modeled: a normal phase, an emergency
phase, and the recovery phase. Heuristics are embedded in the rules which deal with
predictions and consequences of possible load failure. The operator is wamed of
impending failure as the system moves through phases of warning, critical and failure.

If the operator takes no action, the system will automatically shed the failing load.
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Only seven basic supervisory rules are used to control the system. Allnsevuybau:
CLIPS patterns and virtually no frame-based templates or complex objects. (Vezina
1988, pp. 211-220)

The Center for Engineering Systems and Research (CESAR) at Oak Ridge
National Laboratory has implemented a robotic expert system in CLIPS version 4.0
which allows a robot to find and operate plant controls in a hostile atmosphere such as
a smoke-laden control room. The object of this was to implement machine leamning.
(Spelt 1989, pp. 8-15)

Elcee Computek Incorporated has been developing a guidance system simulator
known as KMARS (Knowledge/Geometry-based Mobile Autonomous Robot Simulator)
for robotic vehicles. This includes both a knowledge base (written in CLIPS 4.3) and
& geometry base. The simulator plans and executes motion for a point robot in a two-
dimensional environment. The expert system calls C language functions to execute
procedural activities. The expert system attempts to determine if a geographical goal
can be located by a limited range sensor. If the goal cannot be "seen” by the sensor,
a subgoal is created. When the point vehicle reaches the subgoal area, the vehicle
sensors are again activated to see if the goal can be detected. The overall purpose in
this system is to explore unknown eavironments with little a priori knowledge (Cheng
1990, pp. 822-830). This application is similar in nature to the general autonomous
underwater vehicle problem and is one more indicator that CLIPS is a proper tool for




C. COMPARISONS AND BENCHMARK

The recent virtual explosion of available expert system tools has made selection
of the appropriate wol for an application a daunting task. William Mettrey of Bell-
Northern Research recently compared five well-known tools [ART-IM, VAX OPSS,
Level S, KES) for adapuability and support of the these commonly desired
baraciemistics

* knowledge representation
* inference

e development environments
e delivery environments

¢ documentation

support (Mettrey 1991, p. 19)

Mettrey found the inferencing capabilities of CLIPS to be very strong. The Rete
algorithm upon which it is based is a very appealing and efficient algorithm. Despite
this, Mettrey criticizes CLIPS for not having frame-base reasoning. (At the time of
publishing, CLIPS version 5.0 with the CLIPS Object Oriented Language had not yet
been released.) Further, the development environment is not as advanced as some of
the other wols (Mettrey 1991, pp. 20-21). CLIPS 5.0 is currendy being updated to
include a more advanced development environment with a mouse-driven interface.

Naturally, there was a strong tendency to measure less esoteric facets of the

development tools. Mettrey devised a synthetic benchmark that consisted of typical
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rules, consisting of object-attribute-value facts (some with constraints) on the left side
and fact assertions on the right side, which are commonly found in rule-based expert
systems. Seven different cases were examined. In the first case, twenty-five typical
rules were placed in the program. Timing began at run-time and ended at 250 rule-
firings. The number of rules inserted and the rule-firing termination point were
increased by a factor of two in each of the succeeding cases. Timing analysis was
conducted on a Sun 3 workstation, a MaclIntosh 11, and a VAXstation 3100. Knowledge
Engincering System (KES) and CLIPS were first compared on the Sun 3 workstation.
CLIPS outperformed KES quite dramatically : a ratio of 12.7 to 1 in speed on the low-
end case, and 19.5 to 1 in the high-end case of 200 rules with a termination point of
2000 rules. On the Macintosh II, CLIPS performance over Level 5 was less dramatic
but still significant. VAX Official Production System § (OPSS) performance on the
VAXstation 3100 was marginally better than CLIPS. CLIPS fired rules slightly faster
than the Automated Reasoning Tool for Information Management (ART-IM). This is
interesting inasmuch as CLIPS was designed around the characteristics of ART in its
original form although NASA claims that no actual ART source code was used.
Mettrey notes that Inference Corporation, which developed ART, later used CLIPS as
the base for its development of ART-IM. (Mettrey 1991, pp. 22)

Although the benchmarks were useful in determining performance among the
tools, a metric such as this is of limited value. Extensions on performance in all types
of systems cannot be predicted on the basis of this evaluation. Theories of rule
groupings have evolved which indicate that performance may be drastically changed by
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the order in which rules are grouped in a rule-based program. One of the four expert

system tools evaluated, Level 5, does not use the Rete algorithm.

Nonetheless, what can be observed from Mettrey’s benchmark is that CLIPS, for
its cost, is the best forward-chaining expert system tool among those evaluated.
Further, version 5.0 (and its forthcoming subsequent version) has an object-oriented
systems which is more tightly coupled than ART-IM, which lacks a few of the

commonly recognized object-oriented features such as multiple inheritance.

D. PORTABILITY

As this is a specifically stated goal of initial CLIPS development, it is not
surprising that portability is a notable strength. CLIPS can virtually be used in any
eqvironment which supports a standard C compiler. Mettrey’s synthetic benchmark
described above used CLIPS as the standard of comparison because it was the only tool
which ported to all three versions of hardware previously described (Mettrey 1991, pp.
28).

CLIPS applications can be completed as compiled run-time modules in C or in
the interpreted mode of the full CLIPS environment. As the environment is not large
(currently less than 1 megabyte) and the speed-up of the compiled version only slight,
in many applications it may not be to much advantage to convert to a compiled version
except t0 save memory.

Further supporting wide portability is the fact that CLIPS comes with its source
code. It thus can be customized for virtually any application. The CLIPS Advanced
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Programming Guide gives explicit instructions for creating run-time modules and
embedding CLIPS in applications in which the main program is written in C, Ada or
FORTRAN. Run-time modules are created by first compiling the CLIPS source,
loading all files of an application to the CLIPS environment, and then using a command
known as constructs-to-c to convert the total application program to a series of C files.
After modifying the header files, the CLIPS source main program is modified and the
CLIPS modules linked together. The run-time modules are not suitable for an
application which has the build/eval functions (NASA, 1991b, pp. 99-104). Thus, if an
Artificial Neural System is to be simulated, it must be achieved through dynamic
salience only.

Embedding an application requires a similar approach. CLIPS user-defined
functions may be called via the CLIPS Function Call. Constructing objects requires the
CLIPS Make-instance call in the source language. After the Load Constructs command
is given for all of the CLIPS functions, the newly created C files are linked (NASA,
1991b, pp. 35-98). Porting an embedded application, like a run-time module, is
relatively simple.

The GESPAC MPU30HF with Motorola 68030 CPU currently used in the AUV
is well-suited to handle C-based tools. Thus, porting the Mission Executor should not
be a monuﬁ:ental task. The current vehicle software is ported via RS232 interface. The
OS-9 operating system is designed as a multi-processing environment and thus can
casily support CLIPS.




IV. ONBOARD INFORMATION PROCESSING

This chapter examines the data flow between the Mission

Executor and other modules. The Mission Executor receives its path constraints and
bascline commands from the proposed interfaces to cooperating modules (depicted in
Figure 4-1) are discussed.
A. DOWNLOADING POSTURES AND COMMANDS FROM THE MISSION

PLANNER

The offboard Mission Planner was successfully implemented by Ong (Ong 1990)
and is being extended by Caddell (Caddell 1991). It provides a best three-dimensional
path-to-goal given chart features of the region in which it is to operate, time
requirements, and special path constraints. The Mission Executor’s most important
functions in & normal transit are to receive waypoint and command data (denoted as a
path) from the Planner, interpret the movements, convert the path postures to reference
postures, and properly sequence the movement. The path data arc passed to the
Executor in a file. The Executor converts the plan to a series of waypoint objects and
then begins the monitoring of these objects. The other functions which the Executor
carries out, while important, are generally exception-handling relative to normal
operations.

This is not to categorize the Mission Executor’s interplay with the Planner as

simply one of a conversion unit serving a high-level planner. The Mission Executor
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must reason about these waypoints and the associated speeds. If the original

commanded speed for a particular waypoint is no longer valid due to an unplanned
deviation from course, then the Executor must call the Navigation module for an

updated speed to get to the goal on time.

B. UPDATING FROM THE OBSTACLE AVOIDANCE DECISION MAKER

Conceptually, the Obstacle Avoidance Decision Maker has the responsibility for
processing packaged sonar data from the pattern recognition module and relating it to
specific obstacles. Decisions on both the type of obstacle (moving or stationary) and
the avoidance maneuver (decrease-speed, increase-speed, dive, ascend) are determined
and passed to the Mission Executor. One proposal for the manner in which it will pass

data is an obstacle alert-and-direction flag followed by a template of the form:

» obstacle identification
 relative distance

« relative orientation

e time

* movement

« parameters of movement

The direction flag is sent merely to alert the Executor to a real-time report.
Receipt of the template data allows the Executor to call the RePlanner with the

information while also flagging Guidance to be ready for imminent receipt of new
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reference postures for the new path-to-goal referenced to a new origin (the current
geographical position). A low-level reflexive response can also be passed directly to
the guidance controller bypassing the Mission Executor in the case of an unplanned
obstacle close-aboard (Healy 1990).

C. UPDATING FROM THE SONAR MODULE

The Mission Executor normally depends upon obstacle identification and
orientation data passed from the Obstacle Avoidance Decision Maker. Thus, sonar data
from the pattern recognition module is filtered through the Obstacle Avoidance Decision
Maker. Currently however, this is only a conceptual framework as the Obstacle
Avoidance Decision Maker has not yet been fully realized. To bridge this temporary
software gap, a proposal by Floyd to pass a four-bit flag directly from the pattern |
recognition module has been implemented (Floyd 1991). Depending on the pattern
received, the Mission Executor will opt for a right turn, a left turn, an ascent, or any
combination of these for gross avoidance. It will then request a new route plan from
the RePlanner if there is sufficient need. Consideration of all features of an object, as
in the template described above, cannot be achieved in this configuration without the
intelligence provided by the Obstacle Avoidance Decisionmaker.

Therefore, the granularity to determine if an obstacle requires a significant

deviation from the original track such that a new route must be planned becomes quite
coarse. The Mission Executor takes this into account when performing the so-called

"sensibility check" when the RePlanner provides a new route. The presence of any




obstacles on the new initial leg is quickly checked. More importantly, however, the

current gross vehicle energy state is balanced against the distance-to-go along the new
route. Nonetheless, due to the weakness of this method without the intervention of an
Obstacle Avoidance Decision Maker, there may be several crossover situations in which
a small deviation from the original path may unnecessarily cause a new route to be
planned. This is not cause for concern in the AUV II's testing environment at the NPS
pool because the turns are 90 degrees by default. Further, the pattern recognition
software has the ability to disregard obstacle features which may be distorted while
changing heading, thus avoiding an even great error in maintaining the desired path
(Floyd 1991).

D. INTERFACE WITH THE REPLANNER

The RePlanner, a knowledge-based path-planner which uses an optimized real-
time A* search, attempts to plan a new path-to-goal based on knowledge of the goal
state, the current geographical location and special path constraints passed by the
Executor. It operates in four dimensions: three standard cartesian dimensions and a
fourth dimension of heading or azimuth (Bonsignore 1991). The RePlanner receives
periodic updates from the environmental database, allowing it to replan the new route
from any specified origin.

The RePlanner is alerted to the need to replan by a function call from the

Executor. A flag and the coordinates of the current location are transferred to the
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RePlanner. It constructs a new plan in the same manner as the Planner, using a priori

knowledge of the environment. A file of new waypoints is returned to the Executor.

E. UPDATING FROM THE VEHICLE CONDITION MONITOR

Currently, the Vehicle Condition Monitor is not modeled at the real-time level.
The vehicle’s internal world is modeled as a set of sensor objects which measure the
subsystem components. Objects are instantiated for power sources such as the array of
batteries for subsystem power and propulsion support, control system indicators for
rudders, planes and propellers, sonar power status indicators for the four onboard
sonars, onboard computer temperature sensors, navigation instrument fault sensors, and
power sources for environmental sensors. These have default guard-line and red-line
ranges which, when violated, cause an alarm to be sent w the decision-making levels.
An gutomated turn-key operation is first generated which attempts to balance an
equipment failure or impending failure by bringing a redundant system on-line, if such
redundancy has been provided. If the equipment is critical, it may degrade the mission
status to continue-mission-restricted or to abort-missics ..

The data interface must conform to strict object interfaces, as the subsystem
sensors are modeled as objects. Each object is queried by its own appropriate message
sent at regular intervals from the Executor. A message-handler checks the subsystem
sensor object’s slots to see if an operating parameter such as a temperature or power
Jevel falls within the guardline range. If it does not, the appropriate response is




generated. This may initiate the tumkey operation or may just cause the Executor
decision makers 0 be notified. The object hierarchy is pictorially described in Figure

4-2.

F. INTERFACE WITH THE GUIDANCE SUBSYSTEM

The end result of the Mission Executor functions must be a series of reference
postures and commands to the Guidance subsystem. Guidance is an intermediate-level
function which has an algorithmic reasoning system within it. It converts high-level
decisions and reference postures to low-level commanded postures for the Autopilot
module. A function call within the rules of the Mission Executor generates an alert to
the Guidance module to prepare for receipt of data and commands. The reference
posture is modeled as an object and so passed to the Guidance module. Commands

from the Executor to Guidance are sent as flags.
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V. DESIGN OF THE PROTOTYPE EXPERT SYSTEM

This chapter explores the design of the prototype, interface limitations,
and the justifications for use of several of the software constructs. This design is
intended to cover most AUV situations, but the current implementation is not

considered in any fashion to be fully comprehensive.

A. PHILOSOPHY OF DESIGN: REASONING ABOUT SEVERAL WORLDS

The current NPS AUV 11 architecture is the result of an incremental development
which began in 1988 at the conclusion of research for AUV 1. Evolutionary changes
in subsequent software desig- ~sulted in the need for a high-level control module. The
Mission Executor, SKIPPER, attempts to fill the role of high-level director while
integrating decisions based on input from three worlds: the vehicle’s internal systems,
the external environment, and the mission itself.

Simply put, the Mission Executor operates on more than one layer of symbolic
reasoning. Decisions are modeled heuristically rather than in a strictly algorithmic
fashion. High level decisions require a knowledge of the status of low level items to
get a "sense of the system” and assess whether a mission can be carried out, which is
the ultimate goal. The low level events then drive the broader decisions. The
requirement to model this lends itself naturally to a hierarchical design, but one that is

priority-situation based. Most AUV guidance/control systems are closed-loop and are

equipped to deal with routine maneuvering. The Executor exists mainly to deal with




exceptions to normal mancuvering which cannot be dealt in a strictly algorithmic
fashion. Its reasoning results in interrupt commands to guidance which coatrols the
autopilot. If there are no deviations from the track caused by any of the three worlds
that AUV must deal with, then the Executor merely fulfills a role of sequencer of data.
The current implementation allows for the interface of system monitor functions which
often are found on lower levels in other systems. However, as the current AUV II
architecture does not charge the lower levels with this responsibility, both the
intermediate and high level monitoring tasks are delegated to the Executor for the
present. (This is expected to be replaced by an intermediate level module which
responds to analog-to-digital outputs.)

Although not all experiential knowledge may be encoded in rules, there is reason
to believe AUV missions can be bounded, at least for the time being. Some previous
rescarch has suggested that AUV behaviors might in fact be standardized. The
University of New Hampshire’s Marine Systems Engineering Laboratory (MSEL) and
the Naval Underwater Systems Center (NUSC) cooperated in the research of some
standard situations in which an AUV might find itself. The resulting matrix entitled
"Generalized Problem vs Contingency Alternatives Matrix” they derived is interesting
for its philosophy. Situations are classified in three categories of problems: mission,
environment, and intemnal failures. These have a one-to-one correspondence with the
three worlds that the NPS Mission Executor is trying to model at a high level. The
authors, Westneat of MSEL and Clearwater of NUSC, determined that the AUV
control system must be able of some limited decision-making for a (relatively) short
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mission. Longer missions will require some form of machine leaming which will not

necessarily involve a neural net. (Westneat 1991, pp. 29-33) Figure S-1 shows a
facsimile of the NUSC matrix.

This view of high level control as essentially handling exceptions to normal transit
and operations is embodied in the Mission Executor. Some of the implications of the
matrix merit serious consideration while others are simply beyond the scope of current
technology. Vehicle self-repair is highly unlikely in a mechanical failure situation
unless this term refers only to equipment which has a redundant system or power source
available.

To implement the design described shortly, a number of assumptions about
external modules are made. As some external modules remain to be completed,
external module interfaces such as those described in Chapter IV are modeled as data
files supervised by control rules. Scenarios are implemented by instantiated data from
the files much as the expected module would perform. Files exist to model a module
operating in two modes: (1) supplying data driven by demand from the Executor and
(2) supplying data driven by events. Examples of type one are a command from the
Executor to the Navigator module to provide the current location or 2 command to the
RePlanner © provide a new list of waypoint postures. Event-driven data are inputs
such as the initial list of waypoints from the offboard Mission Planner, obstacle data,

and navigation reports such as waypoint data. This is depicted in Figure 5-2.
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Figure 5-2. Event and Demand Driven Data
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The basic overall design consists of a knowledge base of rules, facts, and objects.
This knowledge base, although currently stand-alone, is expected to interact with
modules such as the Obstacle Avoidance Decision Maker, and call external modules
such as RePlanner and Guidance. Figure S-3 describes in a simple graphical fashion
the overall schema for the Executor: a base of rules exists for each functional (i.e.,
situational) area: maneuvering, navigation, subsystem-monitoring, environmental, and
specialized mission. The rules interact with the object base and cache of facts to
produce the required guidance commands. Several global variables are used to
represent performance parameters.

The rule base is instituted in a hierarchical fashion. The Overall Mission Assessor
tabulates the status of each functional area. If no deviations occur during the course
of the mission, the mission status remains at its default status, continue_unrestricted.
It views each area in two levels: critical and failure. The critical level indicates that the
functional area has suffered some sort of restrictive, non-catastrophic loss of capability.
This can be on the order of loss of non-mission essential equipment or a temporary
mancuvering restriction such as a obstacle avoidance which takes it from its principal
direction of travel. This results in a mission status of continue with restrictions. The
failure level indicates that the functional area has suffered a major loss of capability
such as loss of mission-essential equipment or inability to maneuver. This essentially
results in a mission status of mission abort. The mission restriction category can later
be lifted if the vehicle recovers in ample time. If not, the mission restriction remains

or worsens the overall mission status to mission abort.
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The functional rule areas also have a hierarchy in themselves. A functional
assessor exists at the top of each rule base to cache knowledge about the functional
arca. This then passes the functiona! area information to the main fact base which
causes the executive decision rules to be fired. (The distinction between main fact base
and functional area fact base is merely conceptual as the CLIPS inference engine does

not perform this discrimination.) A schematic of this is shown in Figure §-4.

B. SEQUENCE OF CONTROL

The sequence of control in a rule-based system often contains a relatively high
degree of non-determinism because of its declarative nature. While there are certain
tasks which must be accomplished in procedural order, as mentioned before the
Executor is a system which reasons about situations which are normally beyond a
closed-loop control system. The CLIPS inference engine does a depth-first search of
a fact-node hierarchy, but the actual implementation hierarchy traversal is not quite as
clear.

Input mission postures are first uploaded from the Mission Planner offboard the
vehicle. As at the time of this writing not all AUV II software modules are
implemented, the current version of the Executor assumes that a simple data file
structure exists as the interface between the Mission Planner and the Executor. The
input postures read from the file are given to a Mission Interpreter which places a
posture into the proper object format and designates the high-level classification of the

posture configuration as a transit or specialized mission. As the lower iev~l
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configuration of the posture (depth-level turn, ascent, dive) is unknown at that time, a
comparison is made from waypoint to waypoint and the lower level action instantiated.

Not only a large influence for its own functional area, the Equipment Status area
(or interchangeably Subsystem Monitoring Area) exerts a notable influence in other
areas. Separate rules exist for each equipment area (sonar, control system, navigation
instrument, environmental sensor and special mission equipment) and the respective
power source. A continuous monitoring rule polls each equipment area for equipments
‘which are out of out of normal operating limits. These limits are normally parameters
of sustenance such as potential in volts or power in watts. If a mission essential
equipment fails, it causes a failure in both the Equipment Status area and in the area
with which it is associated. For example, loss of the diving-plane controls causes a
maneuvering loss and a mission essential equipment loss. If an auxiliary power source
exists for an equipment, it can be used in the event that the normal source fails.
Similarly, equipment with redundancy has the capability to have its functions shifted
to the alternate should it fail.

An Equipment Status Assessor awaits the results of equipment polling. If an
equipment fails, then the equipment (previously classified as mission essential or not
mission essential) will cause its equipment classification rule to fire and the Status
Assessor will tabulate the results. If a mission-essential equipment or a sufficient
quantity of non-mission-essential equipment fails, the equipment status area will suffer

a major failure.
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The instantiation of the lower level action attribute of the configuration actually
takes place within the Navigation rules upon the occasion of waypoint arrival. Another
rule which plays a large part in the navigational aspect of high level control is the
assessment of progress along the mission track. The rule does a simple comparison of
overall distance along the track with current location. It then orders a replan of the
current track if the current speed and progress made are not compatible with reaching
the goal area on time. A very simple energy-consideration function checks whether
there is sufficient propulsive power to get to the goal.

Other navigation rules cover specially-monitored depths: both yellow depths and
red depths. If the depth sonar indicates that the AUV has encountered a yellow depth
area, AUV calls the Navigator for a check of the required depth in that area. If the
observed depth does not match the required depth, guidance is ordered to reverse course
and the replanner is called. If a red-depth violation is indicated, guidance is called to
TEVerse COurse.

Maneuvering rules cover several areas. First and foremost are the obstacle
avoidance rules. The highest priority rules cover emergency situations such as detection
of an obstacle close aboard. The various orientations of the obstacle relative to the
AUV’s heading will prompt a right or left tum, an ascent or a full stop (drive motors
stopped) or a combination of these. These are heuristic turning rules which proposed
by Floyd which can produce an effective gross avoidance for the AUV so that the
RePlanner can then be invoked for further path refinement (Floyd, 1991). Floyd’s table

upon which the Executor rules are based is reproduced in Table 5-1. This is essentially
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TABLE $-1. AUV OBSTACLE AVOIDANCE MANEUVERS

(Floyd 1991)
Obstacle Alert
Flag Turn Depth Change
Fwd,right,left,bottom :

0XXO0 —-- ——--

0XX1 - ascend

1101 left ascend

1100 left ———

1011 right ascend

1010 right e

111x stop (ascend)
0 = No Obstacle 1= Obstacle X=0orl




i s,

an interim measure which will be replaced by a more detailed avoidance procedure in
the forthcoming Obstacle Avoidance Decision Maker module.

Detection of an obstacle at the range of the sonar’s limits is another function
covered by maneuvering rules of the Mission Executor. Because of the AUV sonar’s
relatively limited distance, avoidance action must be taken early. The obstacle is
initially checked for its potential to hazard the AUV. This is dependent on the
obstacle’s bearing drift and its relative bearing. This is recorded and a collective
obstacle heuristic is instantiated to determine whether a proportional amount of
obstacles will block the AUV to the left or right. A gross avoidance maneuver is then
commanded to bring AUV away from the obstacle and allow the RePlanner to plan the
new avoidance path with appropriate mapping waypoints.

The procedures for an update to an obstacle are essentially the same. If the
obstacle is still a hazard, then further avoidance and replanning are necessary. There
is a danger that this will result in a significant deviation from the path and that this will
result in a mission abort. This is accounted for in the functional area assessment rule.

If an obstacle is no longer a danger, then its collision danger is recorded as such and
thus it is not considered in the collective obstacle assessment.

Other rules in the maneuvering functional area cover special depth-changing
evolutions such as diving, ascents, and surfacing. The control systems have an
inherently large influence on these special maneuvers. If a control system fails during
one of these situation, that results in an automatically commanded maneuver to

guidance to correct the attitude and level the vessel at a safe depth or change the speed
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at which the maneuver is proceeding. An improper obstacle clearance can also
precipitate changing one of these special evolutions.

The Environment rules have a similar arrangement. An Environmental Assessor
tabulates the number of sensors which have performance readings which are out of
limits. If it is an essential equipment such as the pressure transducer, the loss wxll
cause a functional area loss. If it is a non-mission essential equipment, the loss will
only cause a minor degradation to the environment functional area.

While basic AUV maneuvering control and navigation will be the primary focus
for some time, incorporation of specialized missions will eventually become important.
Specialized Mission rules have a different influence than the previous functional areas.
Most of these rules do not take effect until the transition to a special mission
configuration at the conclusion of the transit. The exception to this is a special mission
area equipment failure. A functional mission area failure occurs if the special mission
equipment fails. Future versions will most likely have an alternative to undertake a
secondary mission if the primary mission cannot be fulfilled. The mission area rules,
although not implemented in the current version , will probably be based loosely on
MacPherson’s description of AUV missions in template form (MacPherson, 1988, pp.
59-75).

As mentioned previously, the functional area assessors report to the overall
mission assessor. This is located in a block of rules known as the Mission Executive,
which constitutes the highest level of reasoning in the Executor. The overall mission

assessor is insulated from details of the reports by the functional area supervisors. It
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only remains for the overall assessor to tabulate the results. If complete failure in any
arca other than the environment functional area occurs, a mission abort results. Less
than a complete failure in a functional area may cause a degradation to continue with
restrictions. A mission degradation results in a phenomenon known as status lock. A
mission status of mission abort results in the two other status rules being removed.
Thus, even a seeming recovery cannot override a mission abort. A degradation to
continue with restrictions can improve to continue unrestricted if recovery occurs in the
mandated time frame.

Mission abort causes the vehicle path to be replanned for a pre-planned
rendezvous point. It may be the origin of the mission or an intermediate point which
facilitates recovery by the launching platform. Continue with restrictions allows the
vehicle to try to recover from its maneuvering, navigation, or equipment restriction. In
the future, it may also allow for altering of the mission.

Certain high-level behaviors are modeled using the Artificial Neural Paradigm
suggested by Giarratano (Giarratano 1991, pp. 228-229). This application of the
salience of a rule is useful in differentiating between a high-level, less frequent action
and a lower-level frequently performed action. The philosophy for using salience in
this manner is that a situation (pattern match) which may cause a mission-abort or
mission-restriction usually requires immediate or timely reaction and certainly takes
precedence over a routine action such as a normal turn or depth-change in a normal
decp-water environment. The emergency-action rule must be fired before other

semantically lower-priority rules on the agenda. This (however loosely) heuristically
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models a submarine commander’s "situational awareness” in an emergency. It might
also be likened to a focus of attention approach, such as that modeled by Blidberg and
his associates at the Marine Systems Engineering Laboratory (Blidberg 1990, pp. 40-
41). Figure 5-§ illustrates an example of this.

Salience is also used in some background functions such as the sequencing of the
mission timer and the continuous loop which queries the slots of the system monitors.
Still, it is used sparingly. SKIPPER still retains a strong declarative nature,

mhﬁuionﬁxecuuxmunsendnotaﬂymfmncepostmstom%dam
modaule, but commands as well. Many of the commands must initiate time-constrained
lower-level actions while the assessment of a particular functional area status is in
progress. The commands must be a series of well-understood actions which will place
the vehicle in a safe configuration when a casualty occurs. The table of these
commands is shown in Table 5-2.

C. TRUTH MAINTENANCE AND THE ROLE OF UNCERTAINTY
1. Maintaining a Consistent Knowledge Base
As important as sensing data and scheduling actions based on it is the
maintenance of consistency in the knowledge base. In a rule-based system this becomes
acutely important when the generation of a new action through a control fact is based
on some other events. If the events which would cause that action are no longer valid,
then it may be the case that the generated control fact is no longer valid. In such a case

it would be necessary 0 go and remove the fact. This can involve complex rules. It
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TABLE §-2. Executor Commands to Guidance

O

Basic Mancuver Order Object of Order
TURN turn-left rudder
TURN tumn-right rudder
DEPTH-CHANGE ascend-XX planes
DEPTH-CHANGE dive-XX planes
DEPTH-CHANGE surface planes
SPEED-CHANGE Increase-Speed drive-motors
SPEED-CHANGE Decrease-Speed drive-motors
SPEED-CHANGE STOP drive-motors
SPEED-CHANGE HOVER hover-thrusters

XX= depth in inches or an indicated safe depth variable




can also be achieved through the use of the CLIPS logical construct discussed
previously in Chapter IIl. One can withdraw a fact which is no longer consistent and
is no longer supported (NASA, 1991).

Nonetheless, there are occasions when the logical construct is not as useful. These
situations usually require some sort of search. Certain high level decisions may require
knowledge of previous decisions. This is particularly true for the high level mission
decisions. A previous instantiation of abort mission cannot allow for improvement to
a better status as the abort mission should only take place when all relevant options to
continue the mission have been explored and found insurmountable. The status lock
feature helps to maintain the high-level configuration while still allowing for the
necessary actions of avoiding obstacles and performing routine navigation enroute to

the mission origin or designated rendezvous. Overall mission status becomes "frozen.”

2. Uncertainty

Uncertainty plays a significant role in a system such as the Mission
Executor. In fact the primary reason for using a forward-chaining rule-based tool such
as CLIPS is that there is some knowledge but a great deal of uncertainty about the
external environment. What is known about the environment can best be classified in
heuristics. A specific area of uncertainty that the Mission Executor must reason about
is the presence of obstacles. Repor;ofanobstacleatshatmgeaumaﬁully
generates a command from the executor (emergency situation) but report of an obstacle
at the limit of the sonar is a different matter. The obstacle is assigned a confidence
factor which comes from the Sonar Processing Suite. Obstacles of high or medium
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confidence cause the path to be replanned. The rationale is that the “arther away an
obstacle is detected, the less radical a turn is necessary. This often results in less

deviation from the original track, saving both mission time and energy consumption.

D. MISSION DOCUMENTATION AND OBJECT PERSISTENCE

1. The Need for High Level Mission Documentation
There is a vital need for documentation of AUV missions. All of the AUV
projects now in development at various facilities around the country have come to rely
on some data recorded onboard the AUV. This compilation of data is valuable for
several reasons: |
* it can be analyzed by human AUV researchers to update and refine the AUV
control systems (both hardware and software)

* it can provide an idea of what works with rule-based systems and where failure
in reasoning occurs.

* it can be used as a persistent base of knowledge for "training” AUV’s in situation
assessment (this was also a conclusion of Westneat (Westneat 1990, pp. 27-33)).
Documentation already exists within the NPS AUV II Baseline system in the

form of the Environmental Database which contains some navigational data and data
sbout obstacles which might be encountered. A mission log is maintained by the
Navigator module in much the same way that a mission log is kept by the navigator of
& maritime vessel. However, in order to adequately study high-level control, a mission
log must also be kept of high-level decisions. It can be regarded as a form of captain’s
log which records the state of the mission at the highest level and justifications for
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decisions made. At a standard time interval or whenever the overall mission decision

changes, an entry is made to the log. This is accomplished by saving objects and facts
to the log file.
2. Object and Fact Persistence in the Executor
Object persistence in a database refers to longevity, its ability to exceed the
life of the executing application program. A knowledge base no longer exists at the
conclusion of an execution. To save its knowledge, the information must be loaded to
a file. Objects are saved via the save-instances command. Facts can also be saved by

the save command (NASA 1991, pp. 169, 188).




V1. PROTOTYPE IMPLEMENTATION AND SIMULATION
This chapter describes the actual prototype implementation. Test results
are discussed at the conclusion of the chapter.
A. CONTROL CONSTRUCTS AND OBJECT IMPLEMENTATIONS

The Mission Executor implementation is built around the overall mission state
existing in one of three forms: Continue_unrestricted, Continue_with_restrictions, or
Abort_Mission. Continue_unrestricted is the initial default state outlined in Chapter
five. This state only exists when no functional area is critical or experiencing failure.
Most of the rules in the Executor are based on missions which cannot remain in the
ideal state due to a casualty or discrepancy in the mission, vehicle, or environmental
worlds.

The vehicle reasoning system is implemented upon the download of the mission
plan. This triggers the rule Mission_Timer, which continually binds the mission time
to the current central processing unit (cpu) time. A timer flag is continually asserted
in this rule and retracted in the timer manager rule. The timer manager continually
asserts facts which trigger other polling rules. While the detailed implementation of this
is available in Appendix A, the main algorithm is shown below:

read (desired_scenario);

if vehicle siatus = operational, then
open(mission_file),

while not end-of-file
read (mission_file);
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make posture_object (delimited mission dataline);
end while;
initialize vehicle-sensor, mission, environmental, maneuvering,
navigation statuses;
initialize mission_timer;
end if;
while not terminating condition
= (completed mission, abort to rendezvous, abort for dynamic recovery)
mission_time = (current cpu time - mission start time);
if the mission_time := time of some event then
instantiate(the event);
if the mission_time := the appropriate documentation time interval then
document the mission;
allow maneuvering, vehicle-sensor, mission, environmental, and navigation
rules o handle any exceptions to closed loop navigation as they occur;
propagate changes (functional area supervisors);
assess impact of any changes;
propagate recovery or abort configurations;
end while;

Initial development of the Executor actually focussed on the internal world.
Coincidentally, it somewhat resembles the model used by Giarratano for his small
inielligent database outlined in the CLIPS Objects Manual (Giarratano 1991a, pp. 150-
161). Vehicle internal state is modeled in the module sensor.clp in which all onboard
equipments are represented as objects. The main class which defines an equipment
object is SYSTEM_MONITOR. Since there are no actual instances of this object,
SYSTEM_MONITOR is an abstract class. From it are derived the various equipments.
The structure of the class inheritance hierarchy is discussed in Chapter V. The

SYSTEM_MONITOR class takes the form:
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(defclass SYSTEM_MONITOR (is-a USER)
(slot type_of_reading)
(slot reading)
(slot status (default normal))

(slot Redundant_Equipment (initialize-only))
(siot redline_high (initialize-only))
(slot guardiine high (initialize-only))
(slot guardline_low (initialize-only))
(siot redline_low  (initialize-only)))

The abstract class SYSTEM_MONITOR shown above is composed of slots which
describe the most general form of equipment sensor onboard. This is easily
configurable for various subclasses. The siot type_bf_reading is common across all
subclasses, as are the reading (the current reading recorded and propagated by the
analog-to-digital converter), and the status. The slot Redundant_Equipment is
claborated in the instance declarations. It either establishes an equipment as redundant
with a similar or backup equipment, or it takes on the value NONE. Most equipment
has a redline reading (either high or low) indicating that the failure point or equipment
shutdown limit has been exceeded. The guardline slots exist to provide the equipment
to degrade more gracefully, perhaps initiating the turn-key operation to energize the
redundant equipment or power source. Naturally, not all equipment or power sources
have both high and low limits. The slots which are not applicable can be set to NONE
in the subclass definition where the message-handlers which depend on the various slots
are claborated.

The various subclasses of SYSTEM_MONITOR have their own class definitions
and respective message-handlers which operate un instances of those classes. Most of

the message-handlers in this module are of the daemon variety. These message
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handlers are activated when a basic action such as insertion of a new value in an object

slot, deletion of a slot value, or reading of a slot value is performed (NASA 1991, pp.
86-87). In this case reading of a slot value is done by a polling rule, monitor-health-
continuously. If the value read exceeds a guardline value, then it often places the
system being monitored in the condition of critical. If the sensor redline value is
exceeded, the equipment is assumed to have failed. In the case of a vehicle control
system such as the rudder or diving planes, there is also a message-handler which
checks the response of the system. This often means positional response. If, for
example, the autopilot generates a command to turn left and the rudder moves in the
wrong direction, then the system is assumed to have become critical. An example of

the CONTROL_SYSTEM class and two message-handlers follows:

(defclass CONTROL_SYSTEM (is-a SYSTEM_MONITOR)
(slot  type_of_reading (default potential_in_volts))
(slot control-type)
(slot response (default normal))
(message-handler get-reading)
(message-handler get-response)

(defmessage-handler CONTROL_SYSTEM get-reading after O
(bind ?control (instance-name-to-symbol (instance-name ?self)))
@f (or (and (> 7self'reading 7self:guardline_high)

(< 7selfreading 7self:redline_high)
(and (< 7seif:reading  7self:guardline_low)
(> 7seif:reading 7self:redline_low))) then
(assert (Equipment_Critical Control_System ?control))

else
(f (or (> 7Tself:reading 7?self:redline_high)
(< 7Tself:reading ?self:redline_low)) then
(assert (Equipment_Failure Control_System ?control))
(send 7self put-status INOPERATIVE))))
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(defmessage-handler CONTROL_SYSTEM get-response afier O
@if (neq ?self:response normal) then
(assert (Equipment_Critical Control_System ?self))))

Using low salience, these message-handlers are polled by a rule which uses an
object query do-for-all-instances for each subclass of SYSTEM_MONITOR interface N
with rules which determine if a situation is applicable to the failure or critical situation. -
Low level rules which determine the situation often have the most complex heuristics
in the Executor. However, the equipment status rules are uncomplicated, as evidenced
by the following:

(defrule Control_System_Failure

(Equipment_Failure Control_System ?control)
=>

(if (eq 2control Hover-Thrusters) then

em(m (Equipment_Mission_Essential no))

(assert (Equipment_Mission_Essential yes)))
(assert (Equipment_Status-Assess )))

This simply says that any failure of a control system, unless the control system
is the hover-thrusters, should be considered mission-essential and that requires impact
assessment of the equipment functional area. The assertion of the Equipment_
Mission_Essential fact and Equipment_Status-Assess control fact will trigger an
equipment status assessment. If the equipment failure is a failure of the hover thrusters,
it will simply be noted.

Objects are not only used to model equipments, but also decisions. Decisions are
maintained for purposes of later retrieval in reconstructing the mission and in

conducting any possible machine leaming for the AUV. The current decision is kept
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in an instance called current. Whenever a new decision has been made, it is passed to
the function decision-change which copies the old decision to an object and in tum
replaces all the characteristic slots of the current decision. Maintaining the decision is
useful not only for mission documentation, but also in resolving conflicts between
states. The decision objects and function constructs take the following form:

(deffunction decision-change (?the_type 2the_rule 7the_level Tthe_action)
(bind Tname (gensym®))
(make-instance Tname of DECISION)
(copy-old-instance name of DECISION)
(send (current] put-type 7the_type)
(send [current] put-rule 7the_rule)
(send [current] put_action 7the_action)
(send [current] put-decision_time ?*mission_time*))

(deffunction copy-old-instance (?instance)

(send (symbol-to-instance-name ?instance) put-type
(send [current] get-type )

(send (symbol-to-instance-name ?instance) put-level
(send [current] get-level))

(send (symbol-to-instance-name ?instance) put-action
(send [current] get-action))

(send (symbol-to-instance-name ?instance) put-decision-time
(send [current] get-decision_time)))

(defclass DECISION (is-a USER)
(slot type)

(slot rule)
(slot level)
(slot action)
(slot decision_time))
Mission documentation is is actually maintained by a rule which uses the save-
instances and save-facts commands to save the mission-state at that point. This is done

at a specified time interval, usually every twenty seconds. Facts and instances normally
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cannot be saved together in the same file using save-facts and save-instances, so that

there is both an instances log and a facts log.

{defrule Document_Mission
Tdocument <- (document mission)
=>
(if (> 7*mission_time* 7*Time_Interval®*) then
(save-insiances "Mission_Log.ins")
{save-facts facts"™)
(bind 7*Time_Interval® (+ 7*Time_Interval® 20.0)))
(retract 7document))

Simulation events are also modeled as objects. An event is made up of ié
number, its time of instantiation, the event trigger (a fact assertion or instance message
sent t0 a handler), and a description of the event for output. The rule trigger is actually
a literal string kept in the event_action slot of the object EVENT_SCHEDULE. When
the event is activated, the CLIPS eval function is used to instantiate the fact or object
message. The global variable 7*current_cvent* updates the focus to the next current
event. The event is actually instantiated by activating all the events whose event times
have passed and have not yet been activated. The output lines shown in Appendix A
have been omitted here for clarity in understanding the rule/message-handler interaction:

(defciass EVENT_SCHEDULE (is-a USER)

(o v
(siot  event_action)

(slot  description)
(message-handier exocute event)

(defmessage-handier EVENT, SCHEDULE execmte-cvent primary O
(oval Tseif:cvent_action)
(bind 7*current_svent* (+ T*current_event® 1)))
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(defrule event_schedule_manager
(declare (salience -500)
Tevent <- (schedule_event next_event)
=
(do-for-instance ((?event EVENT_SCHEDULE))
(and (< Tevent:event_time ?*mission_time*)
(eq Tevent:event_no 7*current_event*))
(send 7event execute-event))
(retract Jevent))

B. LAYERING OF RULES

As described in the previous chapter, rules in SKIPPER are layered according to
level of reasoning. The lowest-level rules actually carry out the corrective action by
ordering Guidance to turn left or ascend-to-safe-depth or ascend-24 (signifying ascend
ten inches). This is a significant break from a human paradigm. In a naval vessel
where maneuvering control is conducted by humans, no human controller is assumed
to be faultlessly competent. The commanding officer frequently cross-checks verbal
reports and orders to ensure that his instructions have been carried out. This is of
particular consequence in a special maneuvering situation. In SKIPPER, the lower level
rules are assumed to be competent operators or controllers. For example, the
mancuvering rule abnormal_dive is given the responsibility to order Guidance to
decrease the speed and ascend to the designated safe depth, bringing the vessel to a safe
configuration before it propagates this situation to the intermediate level assessment
rule:

(defrule sbnormal_dive
(configuration 7config)

(or (Equipment_Failure Control_Sysiem Plane_Controls)
(obstacie_clesrnace Iclesranced:(neq 7clearance normal))




(Call-Guidance-Command Decrease-Speed Drive-Motors)
(Call-Guidance-Command Ascend-7*safe_depth® Planes)
(sssert (maneuvering_ability Major_Restriction)

(assert (Mancuvering_Status_Assess)))

The intermediate level rules appear to be candidates for conflict with lower level
rules. Because the overall mission status is dependent on rapid propagation of changes
from the assessment rules, the assessment rules are given a higher salience value. Some
experiments with the artificial neural system paradigm demonstrated that dynamic
salience is not always effective. In short, the focus of consistently increasing salience
in a particular area based on past inputs can lead to a delay in other functional areas.
This can be critical if the other functional area is about to fail although it had no
previous record of doing so. Assigning a higher salience value to the assessment rules
gives them adequate priority. The Maneuvering Status Assessment rule which handles

an equipment failure and is linked to the low level rule above is an illustration of this:

(defrule Maneuvering Siatus_Assessment_EquipmentFailure
(declare (salience T*maneuver_salience®))
(Equipment_Failure Control_System ?control&:(neq 2control Hover-Thrusters))

=

(assert (decision-change maneuvering_assessment
propagate_equipment_failure))
(assert (Maneuvering_Status severely_restricted)))

Its sibling rule, which evaluates other types of maneuvering status problems,
tabulates the number of discrepancies. A certain number of discrepancies signals that
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the nmavigational track is too ambitious, requiring an unacceptable number of obstacle

avoidance maneuvers. ’l‘hediscrepanciesarebouxndtomeglobalvuiabE
T*mancuverability_factor* which triggers the Maneuvering_Status_Assessment rule and
eventually causes a mission abort.

mwmnmiaionusessmexaminesthecmntmnmofallﬁmcdmalm
and makes a determination on the state of the vehicle mission. At that point, the overall
mission status is changed, if necessary, and the results propagated down to the
respective mission abort or mission restricted rules. Because of the length of this rule
and its respective function, they are displayed in Figure 6-1.

All of the functional arcas have a similar structure. Mancuvering has the added
feature of low level assessment rules which examine the obstacle object base to see if
the indicated obstacles pose a collision danger. This added assessment requires
examination of several object slots and some tabulations, actions which lead to
increased overhead. This overhead is clearly observed in the simulation runs described

telow.

C. USE OF FUZZY LOGIC AND TRUTH MAINTENANCE

Truth maintenance is an integral part of the mission executor, mostly in the
highest levels. The logical construct described previously in chapter three is the CLIPS
environment-installed method of maintaining the integrity of the state. The vehicle’s
initial state (hence ideal state) rests upon a foundation of all functional areas being

operational. This does not mean that all functional areas are devoid of any
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(vetract change)
(if (eq Zequipment_status major_failure) then
ekew *Functional_srea_failure® (+ 7*Functional_asea_failure® 1))

(if (eq ?equipment_siatus equipment_critical) then
(bind ?7*Functional_area_critical® (+ 7*Functional_area_critical®
n»)
(if (eq Tmancuver_status severely_restricted) then
(bind 7*Punctional_area_failure* (+ 7*Functional_area_failure®

1)
else
(if (eq "mancuver_status restricted) then
(+ T*Functional_srea_critical* 1))))
(if (oq Tmav_status out_of_tolerance) then
(bind 7*Functional_area_failure® (+ 7*Functional_area_failure®
1))
alse
(if (eq Tnav_status critical) then
(bind 7*Functional_area_critical*
(+ 7Functional_srea_critical® 1))))
Gf &MM major_deviation) then
T*Punctional_srea_failure*
e (+ *Punctional_area_failurc® 1))
(f (eq Tenvironment_status critical_devistion) thea
(bind T Fusctional_srea_critical®
(+ T™PFunctional_srea_critical* 1))))
(if (eq ?specmission_status infeasidbie) then
(bind 7°Functional_srea_failure*

(+ 7*Punctional_srea_failure® 1)))
(Total-Fusctional- Probless Yoverall))

Figure 6-1. Ovenall Mission Assessment Rule
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complications, just that the complications will not cause the vehicle to become critical.
The essence of this ideal state is embodied in the following rule:

Any failure of a particular functional area will cause the mission status to be
retracted. However, the functional area which caused the change in overall mission
status will cause the overall mission status to change. Thus, just as the overall mission
status of Continue_unrestricted is being retracted, a new mission state is being asserted.
There is no "stateless” gap in mission status.

A functional area failure causes a mission abort, resulting in vehicle recovery or
an abort transit to the designated rendezvous. The abort status is onc that should
remain in effect until the vehicle is recovered. However, in the interval between the
status change and the actual vehicle recovery, there is a possibility that a functional area
becoming critical could later attempt to cause a status of Continue_with_Restrictions.
There is also the possiblity that the functional area recovery rules could cause a new
state of Continue_unrestricted. To counter any possibility that this could happen, a truth
maintenance feature of status lock is incorporated. This causes the mission assessor

rule %o be excised or removed. Thus, no mission state change can occur. This rule is
depicted below:

o
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{defrule Abort_Mission

(declare (salience 500))
(Ovenall_mission_status Abort_mission)
change <- (propagate-change down)
Tpoint <- (waypoint o)

=

(retract 7point)

(retract 7change)

(decision-change Overall_Mission Abort_Mission Low
lock_status_and_replan_route_to_sbort_rendezvous)

(undefrule Overall_Mission_Assessor)

(do-for-instance {(?control CONTROL_SYSTEM))

(printout ¢ crif crif ">>>>> Shuiting Down for Dynamic Recovery <<<«<<" crif
">»>>> Transponder will function for 2 hours <<<<<" cif)

(halt)))
(Abort-Route))

Fuzzy logic is used in obstacle avoidance rules in the confidence factor
assignment. If the confidence factor is high t0 medium and the obstacle is within the
180 degree arc about the bow of the AUV, then the obstacle is considered to be a
collision danger. This confidence factor is checked whenever an obstacle alert flag is
sent, be it an update or a new obstacle.

(defmessage-handler OBSTACLE obstacle-change primary O
(if (and (eq Tself:confidence_factor high)
(eq Pseif:confidence_factor medium))
(or (and (>= 7self-bearing 270.0) (<= 7self:bearing 359.))
(and (<= ?self:bearing 90.0) (>= ?seif:bearing 0.)))) then
(send Pvelf put-collision_danger YES)
(assert (collective_obstacle_assessment))
else
(send Teelf put-collision_danger NO)))

D. RESULTS
Implementing the Mission Executor Code involved some testing of the rules to
determine if the overall desired terminal action could be generated. In this heuristic
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model, the intent was to determine if symbolic high-level reasoning would achieve the

desired behavior. Another benefit was to determine if the reasoning system could
recognize situations and try to approximate real-time constrained decision-making.
Navigational waypoints used in the scenarios are based on the model of the Naval
Postgraduate School pool by Magrino and Floyd show in Figure 6-2. These are the
same used in evaluating the navigational controller (Magrino, 1991). An average
mission time of two to four minutes is used for the ideal non-avoidance path
transit/mission. The scenarios described are listed in Appendix B for reference.
Propagation effects are displayed in Table 6-1. Run-times do not agree with mission-
completion times simply because mission times are based on a starting time which is
instantiated upon the full download of the mission navigational plan, often a full 2.0
seconds or more after the beginning of program execution.

Scenario one merely tested the most basic case, pre-planned mission execution
monitoring (waypoint sequencing). The Autonomous Underwater Vehicle (AUV) was
given a set of waypoints, each with its specified estimated time of arrival as a
constraint. At the third waypoint, the AUV missed its time constraint by a considerable
amount (47 seconds), enough to cause the Waypoint_DistanceTime_Check rule to alert
the navigation assessment rule. A time difference of 20.0 to 39.99 seconds is
considered to be minor, resulting only in a command to Guidance to increase the speed.
A time difference of 40.0 seconds or more is considered to be a major time deviation,
resulting in a command to increase speed. The Navigation Assessment rule uses the

heuristic rule that four navigation problems such as this cause a replan of the
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Figure 6-2. NPS Pool Mission Schematic




Status
Change

Scen 1
reaction/
propagation
times(secs)t

Scen2

Scen 3

Scen 4

I TABLE 6-1 SCENARIO RESULTS I
Major

Scen 5

e ————— —— — —— — |

Recognition | 0.276 0.452 0.243 0.244 ——-
Assessment 0.35 6.55 0.17 0.16 0.303
Overall 0.16 0.14 0.16 0.15 0.17
Change
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navigational waypoint plan. With only one navigation problem, this resulted in no true
change in the navigation status. Nonetheless, the navigation status was assessed for any
possible effect. The only effect was the low-level command to increase speed although
the current navigation status was propagated to the overall mission assessor.
Recognition of a large navigational discrepancy in time resulted in a time of
propagation of 0.28 seconds from the Waypoint-DistanceTime_Check rule to the
Navigation Assessment Rule. Recognition that this was not a change to status took 0.16
seconds. The overall elapsed mission time was 3 minutes 30 seconds with 18365 rules
being fired.

Scenario two tested the ability of SKIPPER to recognize an untenable obstacle
avoidance situation. Both short range obstacles and long-range obstacles were tested.
The first recognition of an obstacle close-aboard led to an ascent to safe-depth. This
also tested a rule recognizing possible shoaling or grounding of the vessel. The
emergency avoidance maneuver rule began its time check of the avoidance maneuver.
An obstacle detected at long range led to assessment of the obstacle as threatening to
the AUV. The overall maneuvering status was changed to Continue_with_Restrictions.
At onc point enough obstacles had accumulated to cause the collective obstacle
assessment rule to characterize the situation as involving a critical number of obstacles
(heuristic used is four separate encounters). Later the collective obstacle assessment
rule determined that the critical point had been breached by accumulation of too many
obstacles along the track (the heuristic here is that too many obstacles will cause too

many time-consuming avoidance mancuvers). The maneuvering status assessment rule
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determined that this was a functional area failure. The maneuvering functional area
failure then forced recognition that this was an abort-mission situation. From
recognition of the critical point at 50.45 seconds into the mission, it took approximately
6.55 seconds to recognize that this was an undesirable situation. The change in the
maneuvering status and subsequent overall assessment of the mission resulted in a time
of propagation of 0.14 seconds.

Scenario three involved a vehicle control system failure. After passing several
waypoints, the AUV experienced an electrical failure of the diving planes. The first
result was a failure of maneuvering status because that was the more specific rule. The
control system failure rule fired shortly after that leading to an overall mission
assessment that this was an abort situation. From the instantiation of the triggering
event until the time it was recognized as an abort situation was an interval of 0.24
seconds. Propagation of the maneuvering status or equipment status to the overall
mission assessor is difficult to absolutely determine because of the fact that both
mancuvering assessment and equipment status assessment fired. Either one could have
caused the overall mission status to change. Because of the high salience of both rules,
activation of the overall mission assessor occurred only 0.17 seconds after the
equipment status assessment rule fired.

Scenario four evaluated both some obstacle avoidance and environmental
phenomena. Only two obstacle encounters were realized, resulting in only minor
deviations to the planned navigational track. A significant environmental phenomena

was simulated by having readings in all three environmental sensors exceed allowable
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limits. This resulted in a mission abort. From the time of the triggering event until the
recognition by the mission assessor that it was an abort situation, 0.56 seconds elapsed.

Scenario five tested multiple equipment failures. The AUV passed through
several waypoints missing only one time constraint. A sonar failure (forward sonar) led
to a reduction in the overall mission status to Continue_with_Restrictions as the sonar
went 10 a critical state. A second sonar (port sonar) led to a reinforcement of that state.
Failure of the rudder finally led to the AUV surfacing and energizing its transponder.

From the triggering event until the decision to abort, 0.47 seconds elapsed.

E. EVALUATION

Comparison of results reveals that propagation of status from the functional area
assessors to the overall mission status assessor will probably meet real-time constraints
in the relatively slow-moving environment of the AUV in its testing facility. The true
time dependency does appear to be in the low-level action or assessment rules.
Situation recognition depends on good heuristics. Using an artificial neural paradigm
in which as#essment rules were placed on the agenda more quickly based on previous
assessment rule firings (and dynamic salience) did not appreciably increase the speed
with which propagation of the state occurred. In fact, in at least one situation the
propagation speed was slowed by 0.5 seconds.

The use of a layered situation-based reasoning system appears to be sound. By
using an intermediate level assessment rule, the desired rapid reaction can be taken at

the low-level and the assessment of functional state can proceed at the same time.
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Thus, there need not be a salience assigned to every level. This tends to diminish the
benefit of a rule-based system. While it does not appear to work well in this
implementation, a dynamic salience may be beneficial to focus on desired reactions
when the Mission Executor is interfaced with an updated version of the Guidance
system which can handle interrupt commands. Refinement of heuristics will certainly

be necessary to further optimize the rule base.
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VIL. CONCLUSION AND RECOMMENDATIONS

A. SUMMARY OF RESULTS AND CONTRIBUTIONS

1. A Prototype Expert System for Mission Execution
A small prototype has been designed, implemented, and tested for several
scenarios. While not all possible scenarios could be tested, experience in testing and
debugging the Mission Executor implemented in CLIPS version 5.0 illustrates the rapid
prototyping capabilities that are available and the great utility of objects to represent the
onboard systems. Rules for newly-envisioned situations can be added with relative

case. Thus, the prototype is easily extensible.

2. Software Architecture for Mission Execution
The hierarchical structure designed has a recognizable data flow. The
incorporation of the status-lock feature by using the undefrule command to freeze a
mission state and prevent state/rule collision is an effective tool for extension in other
arcas. Status lock can be an effective tool for debugging other types of programs in
which a final overall state must be maintained while other final lower level actions are

executing.




3. Determination of Guidance Interrupt Commands
An initial attempt at defining Guidance interrupt commands has been
accomplished and will subsequently be refined with more experience in submarine
maneuvering.
4. Identification of New Data Flow in the Baseline System
The ability of the Executor to get further navigation updates after a
collision_avoidance maneuver which takes it from the desired path indicates a new
possible on-demand data flow from the Navigator to the Executor. Further, it ag;>ars
reasonable that Gu'dance should provide some kind of confirmation that it has carried

out an interrupt command.

B. FUTURE WORK
Research into a configurable mission executor has several areas for extension.
This mission executor implementation is relatively immature, and further experience in

small underwater vessel missions will allow for greater refinement of its rule base.

1. Mission Executor Portability
The Mission Executor has several modes in which it can reside onboard the
GESPAC computer. As mentioned in Chapter III, a CLIPS exccutable module can be
created by changing various flags in the CLIPS C language source code and
recompiling the Executor application. Another possible alternative is to embed the
Executor application in a large shell program which would hold all of the modules.

While the two previous suggestions would result in a storage savings, the best solution
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for the Executor is to port the entire CLIPS interpreter (with the exception of

development tools) to the onboard computer. This will allow for greater flexibility in
the form of use of the build and eval functions to construct rules as the mission is in
progress.
The build and eval functions can be very useful in coercing the AUV to
"learn” about difficulties encountered along the designated track. A collective decisions
rule can be invoked to analyze all of the decisions made thus far (previously archived
in the decision objects).
2. Interfacing the Executor to Dependent Modules
Although interfaces to the various dependent modules are discussed to some
extent in Chapter IV, some of the interfaces will remain hypothetical until all of the
dependent modules are completed. Naturally, incorporation of the executor into the
overall system will require that a comprehensive system alteration plan be developed.
The CLIPS-to-Ada and constructs-to-c external interfaces need to be defined.
3. Porting the Executor to the AUV II Graphical Simulator
As the offboard mission planner is completed, the actual porting of CLIPS
source code to the updated AUV 1I simulator will take place. While this in itself
should not be tremendously difficult, methods of simulating casualties visually on the
IRIS machine need to be developed so that SKIPPER can give a more intuitive

representation of its abilities.




4. Incorporation of Specialized Mission Rules

At present, the AUV operates in a constrained testing environment, the Naval
Postgraduate School swimming pool. Rescarch for some time to come will focus
primarily on transit, avoidance of obstacles and other hazards, vision and sonar sensing,
and safe return of the vehicle. Eventually, the vehicle will be able to carry out a vel;y
basic mission such as deploying a camera or a hydrographic instrument for a specified
period of time. Many possible AUV missions are elaborated in (MacPherson, 1988).
Rules need to be incorporated for the situations described in that research which cover
casualties, environmental degradations, and obstacles, all of which could hinder or

hazard the specialized mission.
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APPENDIX A. MISSION EXECUTOR SOURCE CODE

Programmer : W P Wilkinson
System H CLIPS 5.0
Program : AUV Mission Executor “"Skipper"™
Functional Area : Main Program
Latest Revision : 21 August 91
Description

: The AUV Mission Executor System. This module skipper.clp
: 1is the main program to which all of the other five modules
: are subordinate. The highest reasoning level (overall mission
: assessment) as well as utility rules for saving decisions
: reside here. Event management is also controlled here. A continuous
loop checks for termination events which shutdown the Mission
Executor.
This software incorporates the use of the following in the
*layered worlds" paradigm:
-- Use of Fuzzy Logic
-=- Prioritization of important actions and state assessment
-- Truth Maintenance via CLIPS logical constuct and "status lock"

e W %e Wy we w,

e e %y

~. o

BPiiiFiiiiidiiiidiiiiiiiiiiiciiiiiciiiiiiiiiiiziiieiiiiiiiiiiza;
Global variables which pertain to main module or to all HE]
parts of the program. For the most part the actual values ;;

% e v

are unimportant to understanding of the program

-
-,
-,

(defglobal 2*start_time* = 0.
?*mission_time* = 0
?*mission_degradation_time* = 0.
?*recovery_time* =- 30.0
?*Time_Interval* = 20.0
?*emergency_salience* = 1000
?*mission_critical power* = 30.0
?*Functional_area_failure* = 0
?*Functional_area_critical* = 0
?*current_event* - 1
?*Goalx* = 0.0
?2*Goaly* - 0.0
?*Goalz* - 0.0)
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iz
Function show-demo-description

Function which shows the user a selection of scenarios.

It is by no means all-encompassing.The 55 rules which make

up this system can be permuted to build many scenarios

PiiiTiiiiiIRiiiiiiiiiiiiveiiiiiiiiiiy
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(deffunction show-demo-description ()

{printout t crlf crlf crlf crlf crlf crlf)
(printout t " Welcome to the MISSION EXECUTOR DEMO “)

(printout t crlf crlf )
{(printout t "WAYPOINTS: All scenarios take place over the same set"

crlf
. of INITIAL waypoint coordinates.™ crlf crlf)
{printout t “EQUIPMENT: All equipment is simulated in the event
file" crilf
" Objects are created for each onboard

equipment” crlf crlf)

(printout t “SITUATIONS: All situations are also simulated in
the event”™ crlf

" file. For instance, an obstacle detection
is " crif
" listed and this simulates the Obstacle
Avoidance" crlf
" DecisionMaker passing this information
through® crlf
" the interface to the Executor . " crlf crlf)

(printout t "SCENARIO CHOICES: select number <Ret>" crlf
"1 Waypoint_Hopping Only (transit)® crlf
"2 Obstacle Avoidance " crlf
"3 Vehicle Control System Failure™ crlf

"4 Obstacles and Environment Problems * crlf
"S Equipment Failures " crlf
"6 Exit the Simulator " crlf crlf crlf))

..... . 4060000020000 0020000000000 000000e0
[N AN AN BN AN AN AN AN AN AV AN AN I B B B O A A N N A ]

[ I
1
0
2
5
]

Decision objects and functions of possible use in
learning program. The decision can be archived in an object.
Most importantly, the decisions made in the system are output
80 that a future developer can see the propagation of changes
in decisions
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P332 03333333330303300203233383330333333303003203033333333334820333
INERE; This copies the current data in the current decision to a ;;;
iiizd a storage object 12
3PPII i IINRNININRICRIENIININNIINI NN

(deffunction copy-old-instance (?instance)

(send (symbol-to-instance-name ?instance) put-type
{send [current] get-type ))

(send (symbol-to-instance-name ?instance) put-level
(send [current] get-level)) .

(send (symbol-to-instance-name ?instance) put-action
(send [current] get~-action))

(send (symbol-to-instance-name ?instance) put-decision_time
(send [current]) get~decision_time)))

(defclass DECISION (is-a USER)
(slot type )
(slot rule)
(slot level)
(slot action)
(slot decision_time))

(deffunction decxszon-change (?the_type ?the_rule ?the_level
?the_action)
{bind ?name (gensym*))
(bind ?the_time (- (time) ?*start_time*))
(make-instance ?name of DECISION)
(copy-old-instance ?name)
(send [current] put-type ?the_type)
{send [current] put-rule ?the_rule)
(send (current) put-level ?the_level)
(send [current] put-action ?the_action)
(send [current] put-decision_time ?the_time)
(printout t crilf ">35>>>>>>>>>> Decision <<<<<<<<<<<< " crlf

" type : " ?the_type crlf
" rule : " ?the_rule crlf
" level : " 2the_level crlf
" action : " ?the_action crlf)
(format t " time $6.3f%n%n" ?the_time ))
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322833232332:33::3: PEvent Objects and Handler ;;;:::5:377333:2333:333
;:; Events are modeled as cbjects with a number, descripticn, 322
;:; and time. The event description and time are output as they ;;:
;;; are processed for execution. i
I3 0330330333030233003200303303830383333033038303370

(defclass EVENT SCHEDULE (is-a USER)
(slot event_no)
(slot event_time)
(slot event_action)
(slot description)
(message-handler execute-event))

(defmessage-handler EVENT SCHEDULE execute-event primary ()

(eval ?self:event_action)
(Printout t Crlf att At dd ettt kAR AR AR ARERRARARRRARRRARRR AR RR®

crlf
" Event Number : " ?self:event_no crlf
" " crlf
" Description : " ?self:description crlf
] L]
crlf)
(format t " Time :  86.3f%n" ?self:event_time )
(printout t [ FTTITTXTTTYTR LRSI SIS 2SS 22222322222 2222223 )
crlf)

{bind ?*current_event* (+ ?*current_event* 1)))

(defclass POSTURE (is-a USER)

{slot configuration)

(slot action)

(slot number)

(slot x_pos)

(slot y_pos)

(slot z_pos) ’
(slot theta )

(slot ETA)) .
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ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

(deffunction Call-Guidance-Waypoint (2?destination)
(assert (Guidance receive-waypoint))
(printout waypoint ?destination))

(deffunction Call-Guidance-Command (?action ?object-equipment)
(assert (Guidance receive-command))
(assert (Current_action ?action ))
(assert (show board))
(printout action ?action " "?0bject-equipment crlf))

’l'llllllll'llllIll'l'!"'0"'00;;'0"""0" T A A A O B O I O N o i
t Y] Functions to simulate RePlanner executing Replan ;;;
2z or Abort Plan 2z

(deffunction Replan-Route (?action
?goalx ?goaly 2goalz)
(do-for-all-instances ((?posture POSTURE)) ;get rid of old
TRUE ; waypoints
(send ?posture delete))

(assert (waypoint 0))

{assert (vehicle operational))
(assert (current_plan "replan.dat"))
(assert (Current_action replanning))
{(assert (upload plan)))

(deffunction Abort-Route ()
{(do-for-all-instances ((?posture POSTURE)) ;get rid of old
TRUE ; waypoints
(send ?posture delete ))

(assert (waypoint 0))

(assert (vehicle operational))

(assert (current_plan “"abort.dat"))

(assert (Current_action transiting_to_abort_rendezvous))
(assert (upload plan)))
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; ; 3333333338233032333383333323383338338304333
iz System 1Initialization 3
is

-
-
-
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R R N R NN R NN R N N N N N N R R N N R R N N N N N N N N R N R R R R R N R R N N N R RN RN Y i
::: The rules, initial facts and initial object instances which are :;:;
::: present at the start of execution . 222

(definstances STARTING_DECISIONS
{(current of DECISION (type Overall)
(rule None)
{level High)
(action Pierside)
(decision_time (time))))

:::2:; After the vehicle is checked for operational status by the
:2::; the movement of a control surface, it is assumed to be
i2::; operating under ideal conditions

(deffacts Starting Facts
(Overall mission_status Continue_Unrestricted)
(configuration transit)
(Equipment_Status normal)
(Maneuvering_Status unrestricted)
(Environmental_Status normal)
(Navigation_Status within_tolerance)
(Spec_Mission_Status feasible))

:::; Opens the simulation data files which mimic the modules which
;::; will interface to the Executor. This does not include the equipment
;::; monitoring interface which is shown in sensor.clp

(defrule initialize-vehicle
=>
(show-demo-description)
(bind ?scenario (read))
(if (and (>= ?scenario 1) (<= ?scenario 5)) then
{(bind ?scenariofile (str-cat "scenario" ?scenario ".ins"))
else (if (= ?scenario 6) then (halt)

else (printout t "Improper Selection -- Please Choose 1-6" crilf
crlf)
(retract *)
(assert (initial-fact))))
(load-instances ?scenariofile)
(assert (vehicle operational))
(assert (waypoint 0))
(open "Guidance.dat"™ waypoint “w")
(open "Command.dat™ action "w"“)
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(open “obstacles.dat™ obstacles "r")
(assert (current_plan "mission_plan.dat®))
(assert (upload plan))
(set-salience-evaluation every-cycle))

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo

iz Starts the vehicle reasoning system :
i Loads up the mission reference postures into objects. H

ooooooooooooooooooooooooooooooooooooooooooooo

{(defrule upload
(vehicle operational)
?current <- (current_plan ?file)
(waypoint ?no)
?upload <-{upload plan)
->

(if (= ?*start_time* 0.) then
(bind ?*start_time* (time)))
(open ?file plan "r")
(bind ?number ?no)
(bind ?config (read plan))
(while (neq ?config EOF)
(bind ?name (gensym*))
{(make~-instance ?name of POSTURE
(configuration ?config)
(action unknown)
{number ?number)
{x_pos (read plan))
(y_pos (read plan))
(z_pos (read plan))
(theta (read plan))
(ETA (xread plan)))
(bind ?config (read plan))
(bind ?number (+ 1 ?number)))
(close plan)
(retract ?current)
{retract ?upload)
(assert (waypoint-status mark_on_top))
(assert (mission_timer running))
(assert (Current_action underway)) )
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PR iV iiNiiiiiiIINIiiiiiiNNIIIIiiii RN

Timer Control (Progzam Loop]

Continually Loops while the vehicle is in operation
Binds the miaaion time to the CPU clock ¥y

(defrule Mission_Timer
(declare (salience -500))
?timer <- (mission_timer running)
=>
(bind ?*mission_time* (- (time) ?*start_tiwme*))
(if (and (neq ?*mission_degradation_timer 0.)
(> ?*mission_time* (+ ?*mission_degradation_time*
?*recovery_time*))) then
(assert (recovery_ evaluation poor))
(bind ?*mission_degradation_time* 0.))

(retract ?timer)
(assert (timer-flag on)))

(defrule timer-manager

7timer-flag <~ (timer-flag on)
=>
(retract 2timer-flag)
(assert (mission_timer running))
(assert (system monitors running))
(assert (schedule_event next_event))
(assert (avoidance_time_check))
(assert (document mission)))

(defrule Document Mission
?document <- (document mission)
->
(if (> ?*mission_time* ?*Time_Interval*) then
(save-instances "Mission_Log.ins")
{save-facts “"Mission_Log.facts"™)
(bind ?*Time_Interval* (+ 2*Time_Interval* 20.0))) ; sets
(retract 2document)) ;time interval for gathering
; log.data
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BEiiiiiiiiiiiiiciiiiiiiiiaiiiiiiidiiiiiiiiiiiiiiiiiiiiiiiiiiiiai;
:: Event Manager/Scheduler ii:
PRI iiiiiviiiiiiiiiiniiiias
:; Check EVENT_LIST for events where mission_time has already :;;
i exceeded event_time and put it on the schedule. 122
FRi3iINiiINININiiiiiiiiiiiiiaiiiiiiiiiiiiiiaiiiiiiaiziiiiiiiiias
(defrule event_schedule_manager
(declare (salience -500))
?event <- (schedule_event next_event)
=>
(do-for-instance ((?event EVENT_ SCHEDULE))
(and (< ?event:event_time ?*mission_time*)
(eq ?event :event_no ?*current_event*))
{send ?event execute-event))

(retract ?event))
FRIIIRIIiiiiiiiiiiviiiiiiiiiiiiiiiiiiiiiiiiiiisiiiiiiiiiiiiiiiis
iii i
iz: Mission Executive iiz
FREIIIINENIIIIIIIINIIINIINIIIIIIIIGIIIIIIIIIIGIIINIGIssissid
iis iis
;:This constitutes the highest level of reasoning within SKIPPER ;;;
;;Decisions made in this block of code affect the status of the ;;:
;;overall mission. iid
FRFiiiiiiiiiiiiiiiiiiiziiiiiiiiiziiiiiiiiiiiiiviiiiiiiiiiiiiiiiiizii:

323:3:32323223333:2:32:3:: Function Total-Functional-

XODL@MS; ; ;350332332338 333333333

132 This tabulates the problems of the various functional areas.
HY

SRR NIINIRNININNIINNNINIINISLNIININIRIRIIIIINISISY:
$iriiiiiiiiiiiiiiiiiiiiiiiiiid

(deffunction Total-Functional-Problems (?overall)
(if (>= ?*Functional_area_failure* 1) then
(retract ?overall)
(assert (Overall mission_status Abort_mission))
(assert (propagate-change down))
(decision-change Overall Mission Overall Mission_Assessor High
Abort_mission)
else
(if (and (eq ?*Functional_area_failure* 0)
(> ?*Functional_area_critical* 2)) then
(decision-change Overall Mission
Overall Mission_Assessor High Abort_mission)
(retract ?overall)
(assert (Overall mission_status Abort_mission))
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(assert (propagate-change down))
else '
( if (and (eq ?*Functional_area_failure* 0)
(neq ?*Functional_area_critical* 0)) then
(retract ?overall)
(assert (Overall mission_status Continue_with_Restrictions))
(decision~change Overall Mission Overall Mission Assessor
High ContinueMission_with_restrictions)))))

iisissisisiissiissss: Overall Mission Status ;;::::5::2::::2:3
This waits on changes to the 5 rule areas Changes from

these are indicated with the assertion of the propagate_
change flag. Changes to functional areas are checked for ;:
effect to the overall mission by the function Total-
functional Problems
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(defrule Overall Mission_Assessor
?overall <- (Overall mission_status ?status)
?equip <- (Equipment_Status ?equipment_status )
(Maneuvering_Status ?maneuver_status )
(Navigation_Status <?nav_status )
(Environmental_Status ?environment_status )
(Spec_Mission_Status ?specmission_status )
?2change <~ (propagate change)
->
(retract ?change)
(if (eq ?equipment_status major_failure) then
(bind ?*Functional_area_ failure* (+ ?*Functional_area_failure*
1)
else
(if (eq ?equipment_status equipment_critical) then
(bind ?*Functional_area_critical*
(+ ?*Functional_area critical* 1))))

(if (eq ?maneuver_status severely restricted) then
(bind ?*Functional_area_failure*
(+ ?*Functional_area_failure* 1))

else
(if (eq ?maneuver_status restricted) then
(bind ?*Functional_area_critical*
(+ ?*Functional_area_critical* 1)))}))
(if (eq ?nav_status out_of_tolerance) then
(bind ?*Functional_area_failure*
(+ ?*Functional_area_failure* 1))

else

(if (eq ?nav_status critical) then
(bind ?*Functional_ area criticalr*
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(+ ?*Functional_area_critical* 1))))
(if (eq ?environment_status major_deviation) then
(bind ?*Functional_area_failure*
(+ ?*Functional_area_failure* 1))
else
(if (eq ?environment_status critical_deviation) then
(bind ?*Functional_area_critical*
(+ ?*Functional_area_critical* 1))))
(if (eq ?specmission_status infeasible) then
(bind ?*Functional_area_ failure*
(+ ?*Functional_area failure* 1)))
(Total-Functional-Problems ?overall))

3i2222i2223322233::: Unrestricted Mission ;;;:::::0:7:2:33:02:3823:3
:::; Default Status for start of mission and when the status ;;:
;;:; is restored to normal after a recovery from mission :

;::; restrictions i

(defrule Continue-Mission_unrestricted
(logical (Equipment_Status normal)
(Maneuvering_Status unrestricted)
(Environment_Status normal)
(Navigation_Status within_tolerance)
(Spec_Mission_Status feasible))
=
(decision-change Overall Mission Continue-Mission_unrestricted
High Continue-mission-with-no-restrictions)
(assert (Overall mission_status Continue_Unrestricted)))

;: by exceeding a standard recovery time) then abort the ;::
;2 mission . ii:

LI R R O R T R R R N R B R N N N R N N N N A N R A S B RS BN N B S ST R SN SN B 'Y ¢ e e s 20 e e s
NN RN R N NN NN NN NN N NN NN

(defrule Continue-mission_restricted-update
(Overall mission_status Continue_with Restrictions)
(recovery_evaluation poor)
=>
(decision-change Overall Mission Continue-mission_restricted-update
Assessment Abort_Mission)
(assert (Overall mission_status Abort_Mission)))
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Initial Restricted Status Actions ;:;::::;::;:;
e mission_degradation status

25-
)
e
[
e
5 v

(defrule Continue_mission_restricted initial
(Overall mission_status Continue_with_Restrictions)

=>
{decision-change Overall Mission
Continue_mission_restricted initial

Assessment Note-time-of-status-change)
(bind ?*mission_degradation_time* (- (time) ?*start_time*)))

is222:32::::: Abort Mission ;;:i:::5::83:2:282:2:33:3
A mission abort causes the overall mission status to
be locked. A replan must be made to reach the

abort rendezvous

Default is that AUV can return under'own power after
; a mission abort. However, if there is a primary control
; system failure such as failure of rudders or dive-planes,

; the vehicle will require recovery.

(defrule Abort_Mission
(declare (salience 500))
(Overall mission_status Abort_mission)
?change <- (propagate-change down)
?point <- (waypoint ?no)
>
(retract ?point)

(retract ?2change)
(decision~change Overall Mission Abort_Mission Low
lock_status_and_replan_route_to_abort_rendezvous)

(undefrule Overall Mission_Assessor) ; status lock

(do-for-instance ((?control CONTROL_SYSTEM))
(and (eq ?control:status INOPERATIVE)
(neq ?control Hover-Thrusters))

{(progn (Call-Guidance-Command turn_on_transponder transponder)
(Call-Guidance-Command ascend_surface planes)
(printout t crlf crlf ">>>>> Shutting Down for Dynamic Recovery

<<<" crlf
">>>>> Transponder will function for 2 hours
<<<" crlf)
(halt)))
(Abort-Route ))
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........................................................

Function Display-Status
Actually prints the status display.

(deffunction display-status (?waypoint ?status ?maneuvering ?navigation
?environment ?equipment ?mission
?action

?depth-configuration ?configuration )

(bind ?display-time-minutes(trunc (/ ?*mission_time* 60.0)))

(bind ?display-time-seconds (round (mod ?*mission_time* 60.0)))
(if ( < ?display-time-seconds 10.0) then

({ bind ?display~-time-seconds (str-cat "0" ?display-time-seconds)))
(printout t

crlf
"l Skipper's Display I crlf
" crlf
" TIME in min_secs " 2?display-time-minutes ":"
?display-time-seconds crlf
" Overall Mission Status >>>> " ?status " <<<<" crlf
" Manuevering_ Status : " ?maneuvering crlf

" Equipment_Status
" Navigation_Status

?equipment crlf
?navigation crlf

L]
"

Environment_status : " <?environment crlf
L]

Spec_Mission_status:

?mission crlf

L TR I crlf
"| evolution : " 2configuration crlf
"| depth-status : " 2depth-configuration crlf
ﬂl -
crlf
"| Last Command to Guidance : " ?action crlf
"| enroute-waynoint : "™ “?waypoint crlf
D el D DL bl S Dl e e il " crlf
" Obstacles " crlf
" crlf
" Direction ] Proximity | Type I® crlf
T e o o e i e e W D D D = D . Y A Ve . - .- S p— n
crlf)

(do~for-all-instances ((?obstacles OBSTACLE))

(eq ?obstacle:collision_danger YES)

{printout t " " ?obstacle:bearing "

?obstacle:proximity * "
?obstacle:type crlf crlf))
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{printout t "

"I EQUIPMENT DOWN

" crlf
I" crlf

" crlf)

(do-for-all-instances ((?equipment SYSTEM MONITOR))
(eq ?equipment:status INOPERATIVE)

we We W Wy we %

w. e

(printout t ">>>>>>>>

nLK<<<<<< " crlf)))

®* (instance-name-to-symbol ?equipment)

to offset deviations or discrepancies. Not as timely as
propagation flow of decisions, this only shows the effects

Shows the status of vehicle worlds and actions being taken ;;

of a decision since the last low level command to Guidance

..............................

(defrule show_status_board

..

~

=>

(Overall mission_ status ?status)
(Maneuvering_Status ?maneuvering)
(Navigation_Status ?navigation)
(Environmental_ Status ?environment)
(Equipment_Status ?equipment)
(Spec_Mission_Status ?mission)
(waypoint ?number)

?2current <- (Current_action ?action)
?show <-{(show board)

(do-for-instance ((?point POSTURE))
(eq ?point:number (- ?number 1 ))

?point:configuration)))

(progn (bind ?depth-configuration ?point:action)
(bind ?configuration
(display-status

?number ?status ?maneuvering ?navigation

?environment 2equipment mission ?action
?depth-configuration ?configuration)

(retract ?current)
(retract ?show))

-

End of Main Module
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: Programmer : W P Wilkinson

; System s CLIPS 5.0

: Program : AUV Mission Executor “SKIPPER"

H Functional Area : Navigation

H Latest Revision : 30 August 91
333333020 330333300300000000283333333%85500330333333343
i

: Description
PIIEiIIINIIININIIINNINIINRIIIIIIINIIIVIIIIIIIIIGGIIIIIIIizisiad

: This area covers the navigational situations which require a
H higher level of reasoning than can normally be found in the

: Navigator Module. Covers special navigational situations such
: as diving, surfacing, ascending to safe-depth, and more

; mundane situations such as passing waypoints.

3PS IEIINNINIIINIIIINIIININRIIIVININIIIINIIIIIICILIGIIIIIIIIIIIINIIIS
30ININiII iz iiiiiii;:
:::;: Global variable Declarations Pertaining to Navigation;
33323 iiiiiiiiFiiiRRIIII IR
(defglobal ?*QtyNavProblems* =0
?*NrNavInstrumentsfailed* =0
?*NrBottomObstacles* =0
?*navigation_salience* = 100
?*safe_depth* =3
?*BottomObstacleTime* = 0.0
?*bottom_obstacle_time_interval* = 10.0)
PRIV
iz Navigation Status Assessment :::
FITIINIIIIIIIINIIIIIIIINIIINIIIIIIGIIIIIIINIIINIIRIIRRiiiiiazis

(defrule Navigation_Assessment
(declare (salience ?*navigation_salience*))
(or (Depth_Status Shoaling)
(Time_Deviation))
?nav <~ (Navigation_Status ?navstatus)
=>
(decision-change Navigation Navigation_ Assessment Assessment
determine_Nav_Status_and_pass_to_Overall Mission_assessor)
(bind ?*QtyNavProblems* (+ ?*QtyNavProblems* 1))
(if (or (>= ?*QtyNavProblems* 4)
(> ?*NrNavinstrumentsfailed* 2)) then
(retract ?nav)
(assert (Navigation_Status out_of_tolerance))
(assert (propagate change))
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else
(if (or (= ?*QtyNavProblems* 2)
(= ?*NrNavInstrumentsfailed* 2)) then
(retract ?nav)
(assert (Navigation_Status critical))
(assert (propagate change)))))

iiisiiiiii Separate Equipment Consideration

(defrule Navigation_Assessment_Equipment .
(declare (salience ?*navigation_salience*))
(Equipment_Failure NAVIGATION INSTRUMENT ?instrument)
?nav <- (Navigation_Status ?navstatus)
=>
(decision-change Navigation Navigation_Assessment Assessment
determine_Nav_Status_and_pass_to_Overall Mission_assessor)
{bind ?*QtyNavProblems* (+ ?*QtyNavProblems* 1))
(if (or (>= ?2*QtyNavProblems* 4)
(> ?*NrNavinstrumentsfailed* 2)) then
{(retract ?nav)
(assert (Navigation_Status out_of_tolerance))
(assert (propagate change))
else
(if (or (= ?*QtyNavProblems* 2)
(= ?2*NrNavInstrumentsfailed* 2)) then
(retract ?nav)
(assert (Navigation_Status critical))
{(assert (propagate change)))))

PRI iNiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiiisiii:

s:3:::3: Although the AUV's propulsion power source is good for

$2:7::::; approximately 2 hour mission, even long testing facility

i::3:::; missions may cause an abort.

P33T iRt

(defrule Energy Assessment v

(Energy Deviation major)

?status <-(Navigation_Status ?navstatus)

->

(retract 2status)

(assert (Navigation_Status out_of_tolerance))
(assert (propagate change)))
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Waypoint Arrival Rules

~ o«
.o wa

These rules are invoked whether or not the AUV is in an explicit

:::; exception situation.They compare depth and determine if point :
::::; is the Goal (origin, rendezvous or abort_rendezvous point). ii:
;::: Energy and time are checked, possibly indicators of an 222
:::: implicit exception such as exceeding the estimated time of iz
::;:; arrival (ETA) 12
P3P IINIIIIIIIIIININININIIINIRIINIIVIIIIIIIINIICIIINIIIIIIGIIIII:

;:: Recognizes origin or rendezvous point as appropriate

(defrule Goal_Recognition
(waypoint-status mark_on_top)
{(waypoint ?waypoint_no)

>

(do-for-instance ((?current POSTURE))
(eq ?current:number ?waypoint_no)
(if (eq ?current:configuration Goal) then
(Call-Guidance-Command arrived_at rendezvous)
{(printout t crlf crlf ">>>>>Made it to Goal<<<<<<<" crlf
" At time : " ?*mission_time* crlf)
(halt)))
(assert (compare-depth)))

;:; Upon waypoint arrival, compares depth at current waypoint to next
:;: waypoint to determine overall change

(defrule WaypointArrival-DepthComparison-GoalCheck
?2compare <- (compare-depth)
?w <- (waypoint-status mark_on_top)
(wvaypoint ?waypoint_no)

->
(decision-change Navigation WaypointArrival-DepthComparison
Low_assessment determine_type_of_depth_change)
(retract ?compare)
(retract ?w)
(do-for-instance ((?current POSTURE) (?next POSTURE))
(and (eq ?current:number ?waypoint_no)
(eq ?next:number (+ ?current:number 1)))

{(progn (if (eq?current:z_pos ?next:z_pos) then (send (symbol-to-
instance-name ?current)
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put-action no-depth-change))
(if (and (> ?current:z_pos ?next:z_pos)
{neq ?next:z_pos 0.0)) then
(send (symbol-to-instance-name ?current)
put-action ascent))
(if (and (> ?current:z_pos ?next:z_pos)
{(eq ?next:z_pos 0.0)) then
(send (symbol-to-instance-name 2current)
put-action surface))
(if (< ?current:z_pos ?next:z_pos ) then
(send (symbol-to-instance-name ?current)
put-action dive))))
(Call-Guidance-Command mark on_top waypoint)
(assert (delta_depth_check complete))
(assert (time-distance-check)))

(defrule Waypoint_monitor
?point <- (waypoint ?no)
?depth-check <- (delta_depth check complete)
(configuration ?config)
=>
(decision-change Navigation Waypoint_monitor Low_assessment
assess_next_waypoint_and_sequence)
(bind ?next_pecint (+ ?no 1))
(retract ?point)
(do-for-instance ((2?destination POSTURE ))
(eq ?destination:number 2next_point)
(Call-Guidance-Waypoint ?destination))
(retract ?depth-check)
(assert (waypoint ?next_point)))
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(defrule Waypoint_DistanceTimeEnergy_Check
(waypoint ?no)
?t-check <-(time-distance-check)
=>
(decision-change Navigation Waypoint_DistanceTime_Check
Low_assessment determine if need_to_increase_speed)
(bind ?energydepletion (* .00013 2?2*mission_time?*))
(if (> ?energydepletion .70) then
(assert (Energy Deviation major)))
(do-for-instance ((?point POSTURE))
(eq ?point:number ?no)
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(if (> (abs (- ?*mission_time* ?point:ETA)) 40.0) then
(assert (Time Deviation))
else
(if (> (abs (- ?*mission_time* ?point:ETA)) 20.0) then
(Call-Guidance-Command Increase-Speed Drive_motors))))
{(retract ?t-check))

(defrule Time_Deviation
{(Time Deviation)
->
(Replan—-Route none ?*Goalx* ?*Goaly* ?*Goalz*))

Depth Rules i
These rules require a direct depth-check from sonar. Currently ii:
exceptions to correct bottom following are signalled by the ;;:
emergency obstacle flag iiz

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

(defrule depth_sounding_deviation_short_range
(or (obstacle-flag-emergency 0001)
{obstacle-flag-emergency 0011)
{obstacle-flag-emergency 0101)
(obstacle-flag-emergency 0111)
(obstacle-flag-emergency 1101)
(obstacle-flag-emergency 1011))
=) .
(decision-change Navigation depth_sounding_deviation_shortrng
low_supervisory avoid possible_shoaling)
(Call-Guidance-Command ascend-?*safe_depth* planes)
(bind ?*NrBottomObstacles* (+ 2?*NrBottomObstacles* 1))
(assert (Depth-Status Violation)))

(defrule depth_sounding_deviation_long_range
(obstacle_alert on)
(new_obstacle on)
->
(decision-change Navigation depthsounding deviation_longrng
low_supervisory avoid_possible_shoaling early)
(do-for-instance ((?obstacle OBSTACLE))
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(and (eq ?obstacle:type bottom)
(eq ?obstacle:ID_num ?*obstacle ref*))

(progn
(bind ?*NrBottomObstacles* (+ ?*NrBottomObstacles* 1))
(Call-Guidance-Command ascend-?*safe_depth* planes)
(assert (Depth-Status Violation)))))

:::;: MAggregate of obstacles over short period of time indicates the AUV
:2:; is in a serious potential grounding situation

{defrule Detect_Shoaling

(Depth-Status Violation) .
(test (> ?*NrBottomObstacles* 1))
=) -

(decision-change Navigation Detect_Shoaling Low_assessment
determine_if really shoaling or just bottom obstcl)
(if (and (> ?*NrBottomObstacles* 4)
(< (- ?*mission_time* ?*BottomObstacleTime*)
?*bottom_obstacle_time inte:val*)) then
(assert (Depth-Violation Shoalinq))
(Call-Guidance-Command Stop Drive-motors))
(bind ?*BottomObstacleTime* ?*mission_timer))
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Programmer : W P Wilkinson

; System : CLIPS 5.0
; Program : AUV Mission Executor "SKIPPER"™
; Functional Area : Maneuvering Rules

Latest Revision : 30 Auqust 91
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situations involving obstacles, maneuvering hazards during

;
This section of the Mission Executor contains the rules for H
a dive, ascent, or turn. :

’

e wp we e

i Global Variables Pertaining To Maneuvering iz
BPP3iiiNiiiiiiNiaiiiiiiciiaiiiiiiiiiziiiNiiiii
(defglobal ?*maneuver_salience* = 100

?*obstacle_ref* =0
?*obstacle_clearance_time* = 30.0
?*avoidance time* = 0.
?*maneuverability factor* =0)

(defclass OBSTACLE (is-a USER)
(slot ID_num)
(slot type)
(slot bearing)
{slot proximity)
(slot brng_drift)
(slot time observed)
{slot confidence_factor)
(slot collision_danger)
(message-handler obstacle-change ))

Checks to see if obstacle is in a 180-degree arc about the
bow of the sonar

(defmessage-handler OBSTACLE obstacle-change primary ()
(if (and (or (eq ?self:confidence_factor high)
(eq ?self:confidence_factor medium))
{or (and (>= ?self:bearing 270.) (<= ?self:bearing 359.))
(and (<= ?self:bearing 90.) (>= ?self:bearing 0.)))) then
(send ?self put-collision_danger YES)
(assert (collective obstacle_assessment))

else
(send ?self put-collision_danger NO)))
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(defrule Maneuvering_Status_Assessment
(declare (salience ?*maneuver_salience?*))
?20bst <-  (Obstacle_Avoidance restricted)
7assess <- (Maneuvering-Status-Assess)
maneuver <- (Maneuvering_Status ?status)
->
(decision-change Maneuvering Maneuvering_ Status_Assessment
maneuvering-assessment change-overall-maneuvering-status)
(bind ?*maneuverability factor* (+ ?*maneuverability_tfactor* 1))
(if (> ?*maneuverability_ factor* 2) then
(retract ?maneuver)
(retract ?obst)
(assert (Maneuvering_Status severely_ restricted))
(assert (propagate change))
else
(retract ?maneuver)
{(retract ?obst)
(assert (Maneuvering_Status restricted))
(assert (propagate change)))
(retract ?7assess))

(defrule Maneuvering_Status_Assessment_long _range
(declare (salience ?*maneuver_salience?*))

?m_ability <- (maneuvering ability 2ability)
?assess <- (Maneuvering-Status-Assess)
?maneuver <- (Maneuvering_Status ?status)
=>
(decision~change Maneuvering Maneuvering Status_Assessment
maneuvering-assessment change-overall-maneuvering-status)
(bind ?*maneuverability_factor* (+ ?*maneuverability_ factor* 1))
(if (or (> ?*maneuverability factor* 2)
(eq ?ability Major_Restriction)) then
(retract ?maneuver)
(assert (Maneuvering_Status severely_restricted))
(assert (propagate change))
else
(retract ?maneuver)
(assert (Maneuvering_Status restricted))
{assert (propagate change)))
(retract ?2assess))
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(defrule Maneuvering Equipment_Failure
(Equipment_Failure Control_System 2controlé: (neq ?control Hover-
Thrusters))

=>
(decision-change Maneuvering Maneuvering_Status_Assessment
maneuvering-assessment change-overall-maneuvering-status)
(assert (Maneuvering Status severely_restricted))

(assert (propagate change)))

2000 e LI Y
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ve Maneuvers for Obstacles at
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(defrule emergency_ maneuver_evaluation

(or (obstacle-flag-emergency ?)
(new-obstacle on))

=>

(decision-change Maneuvering emergency maneuver_evaluation
assessment
assess_emergency_obstacle_avoidance maneuvers )

{(bind ?*avoidance_time* ?*mission_time*)

(assert (assess avoidance_maneuver)))

(defrule Assess_Avoidance_Maneuver
(declare (salience -500))
7assess <- (assess_avoidance_maneuver)
?check <- (avoidance_time_check)
->
(retract ?check)
(if (> ?*mission_time* (+ ?*avoidance_time* ?*recovery_time*))then
(retract 2assess)
(assert (maneuvering_ability Major_Restriction))
(assert (Maneuvering-Status-Assess))))

(defrule emergency-evasive-maneuver-ascend

(declare (salience 1000))

(or (obstacle-flag-emergency 0001)
(obstacle-flag-emergency 0011)
(obstacle-flag-emergency 0101)
(obstacle-flag-emergency 0111))

-
(decision-change Maneuvering emergency-evasive-maneuver-ascend
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Low-supervisory-level ascend to_avoid obstacle )
(Call-Guidance-Command ascend-?*safe_depth* rudder )
(assert (Obstacle_Avoidance restricted)))

(defrule emergency-evasive-maneuver-leftascend
(declare (salience 1000))
(obstacle-flag-emergency 1101)

=>
(decision-change Maneuvering emergency evasive maneuver-leftascend
Low-supervisory-level
turn_left_and_ascend_to_avoid_obstcl)
{Call-Guidance~-Command turn-left rudder)
(Call-Guidance-Command ascend-10 planes)
(assert (Obstacle_Avoidance restricted)))

{(defrule emergency-evasive-maneuver-left
(declare (salience 1000))
(obstacle-flag-emergency 1100 )
->
(decision-change Maneuvering emergency-evasive-maneuver-left
Low-supervisory-level turn_left_to_avoid _obstacle)
(Call-Guidance-Command turn-left rudder)
(assert (Obstacle_Avoidance restricted)))

(defrule emergency-evasive-maneuver-rightascend
{declare (salience 1000))
(obstacle-flag-emergency 1011 )

->
(decision-change Maneuvering emergency-evasive-maneuver-
rightascend
Low-supervisory-level

turn_right_and_ascend_to_avoid obstacle)
(Call-Guidance-Command turn-right rudder)
(Call~Guidance-Command ascend planes)
(assert (Obstacle_Avoidance restricted)))

(defrule emergency-evasive-maneuver-right
(declare (salience 1000))
(obstacle-flag-emergency 1010)
=>
(decision-change Maneuvering emergency-evasive-maneuver-right
lLow-level-supervisory turn_right_to_avoid obstacle)
(Call-Guidance-Command turn-right rudder)
(assert (Obstacle_Avoidance restricted)))
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{defrule emergency-evasive-maneuver-stopascend

(declare (salience 1000))
(or (obstacle-flag-emergency 1110)
(obstacle-flag-emergency 1111))

=>

(decision-change Maneuvering emergency-evasive-maneuver-stopascend
Low-level-supervisory Stop_forward movement_ and_ascend)
{Call-Guidance~-Command Stop Drive-motors)
(Call-Guidance~-Command ascend planes)
(assert (Obstacle_Avoidance restricted)))
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$PRiiiiiiiiieiiiiiiiiiiiiiii:
Special configurations which can easily become
catastrophic if an abnormal condition exists.
Diving, ascending and surfacing require
fast reaction to counter an unstable control
system or an obstacle close-aboatd
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(defrule abnormal_ surface

(configuration ?config)

(action  surface)

(or (Equipment_Failure Control_System Plane_Controls)
{(obstacle_clearance ?clearanceé: (neq ?clearance normal)))

=

(decision-change Maneuvering abnormal surface
Low-supervisory-level
Increase_speed_to_surface)

{Call-Guidance-Command Increase-Speed Drive-motors)

(assert (maneuvering_ability Major Restriction))

(assert (Assess-Manueuvering-Status)))

(defrule abnormal_ascent
(configuration ?config)
(action  surface)
(or (Equipment_ Failure Control_System Plane_Controls)
(obstacle_clearance ?clearanceé&: (neq ?clearance normal)))
->
(decision-change Maneuvering sbnormal_ascent Low_supervisory_level
increase_speed_of_ascent)
(Call-Guidance-Command Increase-Speed Drive-motors)
(assert (maneuvering ability Major_ Restriction))
(assert (Maneuvering-Status-Assess)))
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{(defrule abnormal dive
(configuration ?config)
(action dive)

(or (Equipment_Failure Control_System Plane_Controls)
(obstacle_clearance ?clearance&: (neq ?clearance normal)))

>

(decision-change Maneuvering abnormal dive Low_supervisory level

decrease_speed_of_dive_ascend_to_safe_depth)
(Call-Guidance-Command Decrease-Speed Drive-motors)
(Call-Guidance-Command ascend-?*safe_depth* Planes)
(assert (maneuvering ability Major_ Restriction))

(assert (Maneuvering-Status-Assess)))

-------------

32 Sensor_Limit Obstacle Detection i3
H¥ These Rules interface with the Obstacle Avoidance iz
H] DecisionMaker. Most of these conditions can only be iv:
3 simulated until the Obstacle Avoidance DecisionMaker iz
H is completed iis
iz P
SNV

;; Detection of a ™new"™ obstacle ;;;;:;ii::2:32:3223:2:8:833:2333:3833

;; about the bow
?2: the bow.

(defrule Obstacle Detection_Normal Limits
7obstflag <- (obstacle_alert on)

?new_one <- (new_obstacle on)

->

(decision-change Maneuvering Obstacle_detection_Normal Limits
Low_assessment classify normal_ range_obstacle_as new)

(bind ?*obstacle_ref* (+ ?*obstacle_ref*
(make-instance (gensym*) of OBSTACLE
(ID_num
{bearing
(type
(proximity

124

; The obstacle is assigned an ID reference number for tracking ;
; As the OBSTACLE class message-handler indicates above,
; we are only interested in obstacles in a 180-degree arc
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1)

(read obstacles))
{read obstacles))
(read obstacles))
{read obstacles))




{brng_drift (read obstacles))
{time_observed (read obstacles))
(confidence_factor (read obstacles))
(collision_danger unknown))
(do-for-instance ((?obstacle OBSTACLE))
(eq ?obstacle:ID_num ?*obstacle_ref¥*)
(send ?obstacle obstacle-change))
(retract 2?new_one))

:::; Update to previously detected obstacle

(defrule Obstacle_ Update
?obstflag <- (obstacle_alert on)
2update <~ (obstacle_update on)
=>
(decision-change Maneuvering Obstacle Update Low_assessment
update_obstacle_status:rangebearing,collision-danger)
(bind ?current_obstacle (read obstacles))
(do-for-instance ((2obstacle OBSTACLE})
(eq ?obstacle:ID_num ?current_obstacle)
{(progn (send ?obstacle put-bearing (read obstacles))
(send ?obstacle put-type (read obstacles))
(send ?obstacle put-proximity (read obstacles))
(send ?obstacle put-brng drift (read obstacles))
{send ?obstacle put-time_observed (read obstacles))
{send ?obstacle put-confidence_factor (read obstacles))
(send ?obstacle put-collision_danger unknown)
(send ?obstacle obstacle-change)))
{retract ?update))

e s e o e s 000 I EN] e s
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Determines whether proportional amount of obstacles are to the;
;::left or right to heuristically determine which way to turn. If ;
;;;equally blocked on both sides, calls for a replan of the route.:;

(defrule Collective_Obstacle_Assessment
(collective_obstacle_assessment)
->
(decision-change Maneuvering Collective_Obstacle_ Assessment
Low_ assessment
assess_whether_ presents_a_collision_danger_and turn)
(bind ?obstacles_left 0)
(bind ?obstacles_right 0)
(do-for-all-instances ((?obstacle OBSTACLE))
(eq ?obstacle:collision_danger YES)
(if (and (>= ?obstacle:bearing 270.) (<= ?obstacle:bearing 359.))
then
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(bind ?obstacles_left (+ ?obstacles_left 1))
else
(bind ?obstacles_right (+ ?obstacles_right 1))))
(if (> ?obstacles_left <?obstacles_right) then
(bind ?turn turn_right))
(if (> ?obstacles_right ?obstacles_left) then
(bind ?7turn turn_left))
(if (and ‘eq ?obstacles_right ?obstacles_left)
(neq ?obstacles_right 0)) then
(bind ?turn reverse_course)
(assert (Obstacle_Avoidance restricted))
(Replan-Route ?turn ?*Goalx* ?*Goaly* ?*Goalz*))
(if (or (> ?obstacles_left 0) (> ?obstacles_right 0)) then
(assert (Call-Guidance-Command ?turn rudder)))
(assert (Maneuvering-Status-Assess)))
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Programmer : W P Wilkinson
; System : CLIPS 5.0
; Program : AUV Mission Executor “SKIPPER"™
; Functional Area : Sub_System Monitoring (Vehicle Internal World)
; Latest Revision : 30 August 91
POSIiiiiiiiiIiiiiiiiiiiiiiiiiiviiiiiviiiiiiiiiiviiiiiiiiiiiiiiiiiii
; Description

This is the high-level abstraction of the system monitoring
functions of the AUV. This module is designed to be an overall
subsytem "health"™ monitor and performs both high-level and low

level polling of subsystems state. Some of the AUV systems

(all of which are modeled as objects) include the

power_sources, navigation instruments, sonars, environmental_sensors
and control_systems such as rudders, planes, thrusters. A continuous
loop polls all systems, and the message-handlers associated with each
class attempt to determine if a reading is out of range. These in
turn produce facts which cause equipment rules to fire.

; Failure conditions cause the Equipment assessor rule to determine

: if an equipment going critical or an equipment failure will cause

H a restriction. If the functional area of Equipment_ Status has a

: a degradation, this is passed to the Overall Mission Assessor in

: in main file skipper clp .

-

Se Ne We Se %y we we W
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SPIIICIIINIINIIIIIIINIINIINIIIIIIIININIINILIIINIIIIIIIILIIIIN:

iiiiis Global Variables Pertaining to Equipment Monitoring;:;

SIS INIIIINIIIINIIIININIIINININIINIINININIIEIRNN

(defglobal ?*sysmonitor_salience* = 100

?*QtyEquipment_failed* - (o]
?*NrNaviInstrumentsfailed* - 0
?*NrSonarfailed* = 0
?*NrEnvironSensorsfailed* - 0)

PP il iiiiiiiiiiNiiiiiiziiiiii;

i AUV Subsystem Monitor Objects ;i

(defclass SYSTEM MONITOR (is-a USER)
(slot type of reading)
(slot reading)
(slot degradation_time)
(slot status (default NORMAL))
{slot Redundant_Equipment (initialize-only))
{slot redline high (initialize-only))
(slot guardline_high (initialize-only))
(slot guardline_low (initialize-only))
(slot redline low (initialize-only)) )
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2is Power sources which support the various equipments ;;;;

(defclass POWER_SOURCE (is-a SYSTEM MONITOR)

(slot type_of_reading (default power_in_watts))

(slot Redundant_Equipment (default NONE))

(slot Alternate_Source (initialize-only))

(slot redline_high (default 0.0))

(slot guardline_high (default 0.0))

{slot Equipment_ Supported) .

(message-handler get-reading))

(defmessage~handler PONER_SOURCE get-reading after ()
(if (and (< ?self:reading ?self:guardline_low)
(> ?self:reading ?self:redline_low)) then
(assert (Equipment_Critical ?self:Equipment_Supported))
(assert (Power_Source failure ))))

R R Sonar class and objects :;::::::::2:

(defclass SONAR (is-a SYSTEM MONITOR)
(slot type-of-reading (default frequency_in_hz))
(slot redline_high (default 50.0))
(slot guardline_high (default 40.0))
(slot guardline_low (default 5.0))
{slot redline_low (default 1.0))
(slot statuschange_time (default 0.0))
(slot recovery time (default 20.0))
(message~handler get-reading))

------------------------------------------------------------------

(defmessage-handler SONAR get-reading after ()
(bind ?sonar (instance-name-to-symbol (instance-name ?self)))
(if (or (and (> ?self:reading ?self:guardline high)
(< ?self:reading ?self:redline_high))
(and (< ?self:reading ?self:guardline_low)
(> ?self:reading ?self:redlinew))) then

(assert (Equipment_Critical Sonar ?sonar)) '

(send ?self put-statuschange_time ?*mission_time*)

{send ?self put-status CRITICAL) .
else

(if (or (> ?self:reading ?self:redline_high)
(< ?self:reading ?self:redline_low)) then
(assert (Equipment_Failure Sonar ?sonar))
(bind ?*NrSonarfailed* (+ ?*NrSonarfailed* 1))
(send ?self put-status INOPERATIVE))))
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(defclass NAVIGATION_ INSTRUMENT (is-a SYSTEM MONITOR)
(slot type of_reading (default power_in watts))
(slot time critical (default 0.0))
(message-handler get-reading ))

3i3223:3 If a Navigation instrument is out of limits
2323:2::: then tabulate the number failed and declare it

failed

(defmessage-handler NAVIGATION_ INSTRUMENT get-reading after ()
(bind ?instrument (instance-name-to-symbol (instance-name ?self)))
(if (or (> ?self:reading ?self:guardline_high)
(< ?self:reading ?self:guardline_low)) then
(assert (Equipment_ Failure Nav_Instrument ?instrument))
(bind ?*NrNavInstrumentsfailed* (+ ?*NrNavInstrumentsfailed* 1))
(send ?self put-status INOPERATIVE)))

i Control Systems ITRIiiiiiiiiiiiiiiiiiiiii:
:::7:3::; 1f these fail, this will eventually cause a mission ;
: ;; abort, unless the control is a Hover-Thruster, which;
3222::2::; at this stage of AUV development, is not mission- H
; ; critical H
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(defclass CONTROL_SYSTEM (is-a SYSTEM_ MONITOR)
(slot type_of_ reading (default potential in volts))
(slot statuschange_time (default 0.0))
(slot recovery_time (default 10.0))
(slot control-type)
(slot response (default normal))
(message-handler get-reading)
(message-handler get-response))

(defmessage-handler CONTROL_SYSTEM get-reading after ()
(bind ?control (instance-name-to-symbol (instance-name ?self)))
(if (or (and (> ?self:reading ?self:guardline_high)

(< ?self:reading ?self:redline_high))

(and (< ?self:reading ?self:guardline_ low)

(> ?self:reading ?self:redline_low))) then
(assert (Equipment_Critical Control_System ?control))
(send ?self put-status CRITICAL)
(send ?self put-statuschange_time ?*mission_time*)

else
(if (or (> ?self:reading ?self:redline_high)
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(< ?self:reading ?self:redline_low)) then
(assert (Equipment_Failure Control_System ?control))
(send ?self put-status INOPERATIVE))))
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just the electrical status. If a control system does not
respond or is in the wrong position , this is an indication
of impending failure and is justification for a status of
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(defmessage-handler CONTROL_SYSTEM get-response after ()
(if (neq ?self:response normal) then

(assert (Equipment_Critical Control_System ?self))
(send ?self put-status CRITICAL))
(send ?self put-statuschange_time ?*mission_time*))
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Environmental Sensors are evaluated for both
electrical status and the environmental reading they

indicate even when operating properly.

(defclass ENVIRON_SENSORS (is-a SYSTEM MONITOR)

(slot type (initialize-only))

(slot environmental reading )

(slot environment_upperlimit (initialize-only))
(slot statuschange_time  (default 0.0))

{slot Redundant_Equipment (default NONE))
(message-handler get-reading))

3z
This checks t

; H RN H ; iz
he environmental sensors for proper i
operation -

(defmessage-handler ENVIRON_SENSORS get-reading after ()

{(bind <?sensor (instance-name-to-symbol {(instance-name ?self)))
{if (or (> ?self:reading ?self:redline_high)
(< ?self:reading ?self:redline_low)) then
(assert ( Equipment_Failure Environ_Sensor ?sensor ))
(bind ?*NrEnvironSensorsfailed* (+ ?*NrEnvironSensorsfailed* 1))
{(send ?self put-status INOPERATIVE)))
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nvironment Limits Readings

This checks the environmental sensors for
environmental conditions which are out of limits.

H The rules which operate on these limits are part
of the environmental world and are found in module
: environment.clp. This message-handler operates

H on that world and is only included here for

; convenience and polling.
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(defmessage-handler ENVIRON_SENSORS get-environmental reading
after ()
{(bind ?sensor (instance-name-to-symbol (instance-name ?self)))
(if (> ?self:environmental_reading ?self:environment_upperlimit)
then
(assert (Adverse_condition ?self:type ?sensor))
(send ?self put-status INOPERATIVE)))

Mission equipment is represented among the equipment 333
monitoring objects although it has little bearing on ;:;
present AUV missions in the NPS H

e e s 000008009 0es e I EEEEEEEI
Ill"'lll"l"'l'll'll""ll'

(defclass MISSION_EQUIPMENT (is-a SYSTEM MONITOR)
(slot type_of_reading (default potential_in volts))
(slot statuschange_time (default 0.0))
(slot type (initialize-only))
(message-handler get-reading))

(defmessage-handler MISSION_EQUIPMENT get-reading after ()
(bind ?instrument (instance-name-to-symbol (instance-name ?self)))
(if (or (> ?self:reading ?self:guardline high)
(< ?self:reading ?self:guardline_low)) then
(assert (Equipment_Failure Mission_Instrument ?instrument))
(send ?self put-status INOPERATIVE)))

131




TR TG LT SEILF TR L S TR P )

$33333533333320220030333000330330203033833404:00

..
-
we
[
.
.
.
-
*e
e
-
L)
L)
e
L™
-
-y
«e
-
-e

“ % %,
. e W
w % w

Equipment Object Instances

The equipment elaborated here is representative of the NPS
AUV 1I, but is not necessarily accurate in all parameters. The
primary use of these is symbolic reasoning about equipment
: monitoring.
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(definstances Sysmonitor-Bank
(Auxl_Bat of POWER SOURCE (reading 40.0)
(Alternate_Source NONE)
(guardline_low 10.0)
(redline_low 5.0)
(Equipment_Supported NONE))

(FWDSonar_Bat of PONER_SOURCE (reading 40.0)
(Alternate_Source Auxl Bat)
(guardline_low 10.0)
(redline_low 5.0)
(Equipment_Supported FWD-sonar))

(PORTSonar_Bat of POWER_SOURCE (reading 40.0)
(Alternate_Source Auxl_Bat)
(guazdline_low 10.0)
(redline_low 5.0)
(Equipment_Supported PORT-sonar))

(STBDSonar_Bat of POWER_SOURCE (reading 40.0)
(Alternate_Source Auxl_Bat)
(guardline_low 10.0)
(redline_low 5.0)
(Equipment_Supported STBD-sonar))

(DEPTHSonar_Bat of PONER_SOURCE (reading 15.0)
(Alternate_Source Auxl_ Bat)
(guardline_low 10.0)
(redline_low 5.0)
(Equipment_Supported DEPTH-sonar))

(FMFMD-sonar of SONAR (reading 35.0)
(Redundant_Equipment NONE))
(PORT-sonar of SONAR (reading 35.0)
(Redundant_Equipment NONE))
(STBD-sonar of SONAR {reading 35.0)
(Redundant_Equipment NONE))
(DEPTH-sonar of SONAR (reading 35.0)
(Redundant_Equipment NONE))
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(Aux2_Bat of POWER_SOURCE (reading 25.0)
(Alternate_Source NONE)
(guardline_low 7.0)
(redline_low 1.0)
(Equipment_Supported None NONE))

(DeadReckon_Bat of POWER_SOURCE (reading 25.0)
(Alternate_Source Aux2 Bat)
(guardline_low 7.0)
(redline_low 1.0)
{ Equipment_Supported Navigation_Instrument
DeadReckonAnalyzer ))

(Gyro_Bat of POWER_SOURCE (reading 25.0)
(Alternate_Sourxce Aux2_ Bat)
(guardline_low 7.0)
(redline_low 1.0)
(Equipment_Supported Navigation_Instrument Gyro))

(DeadReckonAnalyzer of NAVIGATION_ INSTRUMENT (reading 5.0)
(Redundant_Equipment Gyro )

(redline_high 10.0)

(guardline_high 8.0)

(guardline_low 4.0)

(redline_low 2.0))

(Gyro of NAVIGATION_INSTRUMENT (reading 4.0)
(Redundant_Equipment
DeadReckonAnalyzer)
(redline_high 8.0)
(guardline_high 6.0)
(guardline_low 2.0)
(redline_low 1.5))

(Aux3_Bat of POWER_SOURCE (reading 50.0)
(Alternate_Source NONE)
(guardline_low 10.0)
(redline_low 1.0)
(Equipment_Supported NONE))

(Hover_Bat of POMER_SOURCE (reading 50.0)
(Alternate_Source Aux3_Bat)
(guardline_low 10.0)
(redline_low 1.0)
(Equipment_Supported Control_System Hover-Thrusters))

(Motorl_Bat of POWER_SOURCE (reading 50.0)
(Alternate_Source Aux3 Bat)
(guardline_low 10.0)
(redline_low 1.0)
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(Equipment_Supported Control_SystemDrive-Motorl))

(Motor2_Bat of POWER_SOURCE

(reading 50.0)
(Alternate_Source Aux3_Bat)
(guardline_ low 10.0)
(redline_low 1.0)

(Equipment_Supported Control_System Drive-Motor2))

(Planes_Bat of POWER_SOURCE

(reading 50.0)

(Alternate_Source Aux3_Bat) -

(guardline_low 10.0)

(redline_low 1.0)
(Equipment_Supported Control_ System Plane-Controls)) ~

(Rudder_Bat of POWER_SOURCE

(reading 50.0)
(Alternate_Source Aux3_Bat)
{(guardline_low 10.0)
(redline_low 1.0)

(Equipment_Supported Rudder))

(Hover-Thrusters of CONTROL_SYSTEM (reading 7.0)
(control-type auxiliary)

(Drive-Motorl of CONTROL_ SYSTEM

(Drive-Motoxr2 of CONTROL_SYSTEM

(redline_low
(Plane-Controls of CONTROL_SYSTEM

(Rudder of CONTROL_SYSTEM
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(redline_high 10.0)

(guardline_high 8.0)
(guardline_low 4.0)
(redline_low 2.0))

(reading 7.0)
(control-type propulsion)
(redline_high 12.0)
(guardline_high 8.0)
(guardline_low 4.0)
(redline_low 2.0))

(reading 7.0)

(control-type propulsion)

(redline_high 12.0)

(guardline_high 8.0)

(guardline_low 4.0)

2.0))

(reading S5.0)

(control-type depth)

(redline_high 8.0) *
(guardline_high 6.0)

(guardline_low 2.0) .
(redline_low 1.0))

(reading 5.0)
(control-type azimuth)
(redline_high 8.0)
(guardline_high 6.0)




(guardline_low 2.0)
(redline_low 1.0))

(Aux4_Bat of POWER_SOURCE (reading 20.0)
(Alternate_Source NONE)
(guardline low 10.0)
(redline_low 1.0)
(Equipment_Supported NONE))

(SeaTemp_Bat of POWER_SOURCE (reading 20.0) :
(Alternate_Source Aux4_Bat)
(guardline_low 5.0) '
(redline_low 1.0)
(Equipment_Supported Environ_Sensor SeaTempSensor))

(SeaState_Bat of POWER_SOURCE (reading 20.0) _
(Alternate_Source Aux4_Bat)
(guardline_low 5.0)
(redline_low 1.0)
(Equipment_Supported Environ_Sensor SeaStateGyro))

{SeaTempSensor of ENVIRON_SENSORS (reading 3.0)

(environmental_reading 55.0 )

(environment_upperlimit 90.0 )
(type potential )
(redline_high 5.0)
(guardline_high 4.0)
(guardline_low 1.0)
(redline_low 0.5))

(SeaStateGyro of ENVIRON_SENSORS (reading 5.0)

(environmental reading 1.0 )

(environment_upperlimit 2.0 )
{(type potential_in_volts)
(redline_high 8.0)
(guardline_high 6.0)
(guardline_low 2.0)
(redline_low 1.0))

{(PressureTransducer of ENVIRON SENSORS
(reading 50.0)
(environmental_ reading 50.0 )
(environment_upperlimit 75.0 )
(type potential_in_volts)
(redline_high 60.0)
(guardline_high 55.0)
(guardline_low 45.0)
4 (redline_low 35.0))
(Hydrography Instrl of MISSION_EQUIPMENT
(reading 3.0)
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(type Surveying)
(redline_high 5.0)
(guardline_high 4.0)
(guardline_low 1.0)
(redline_low 0.5)))

.......................................................

This continuously polls the equipment monitors to
determine if the equipment power readings are correct,
indicating that the equipment is functioning.

(defrule monitor_health_continuously

(declare (salience -500))
monitor <~ (system _monitors running)
=>

(do-for-all-instances ((?sonar SONAR))
{neq ?sonar:status INOPERATIVE)
(send ?sonar get-reading))
(do-for-all-instances ((?power POWER_SOURCE))
(neq ?power:status INOPERATIVE)
(send ?power get-reading))
(do-for-all-instances ((?instrument NAVIGATION_INSTRUMENT))
(neq ?instrument:status INOPERATIVE)
(send ?instrument get-reading))
(do-for-all-instances ((?control CONTROL_SYSTEM))
(neq ?control:status INOPERATIVE)
(send ?control get-reading))
(do-for-all-instances ((?sensor ENVIRON_SENSORS))
(neq ?sensor:status INOPERATIVE)
(progn (send ?sensor get-reading)
(send ?sensor get-environmental_reading)))
(do-for-all-instances ((?miss_instrument MISSION_EQUIPMENT) )
(neq ?miss_instrument:status INOPERATIVE)
(send ?miss_instrument get-reading))
(retract ?monitor)
(assert (check critical-equipment)))
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(defrule check_critical_equipment
(declare (salience -500))
?check <- (check critical-equipment)
->

(do~for-all-instances ((?sonar SONAR))
(eq ?sonar:status CRITICAL)
{(progn (if (and (> ?sonar:reading ?sonar:guardline_low)
(< ?sonar:reading ?sonar:guardline_high)) then
(assert (Equipment_ Recovery Sonar ?sonar))
(put ?sonar:status NORMAL)
else
(if (> ?*mission_time* (+ ?sonar:statuschange_time
?sonar:recovery_time)) then
(put ?sonar:status INOPERATIVE)
(assert (Equipment_Failure Sonar ?sonar))
(send ?sonar put-status INOPERATIVE)))))

(do-for-all-instances ((?control CONTROL SYSTEM))
{(eq ?control:status CRITICAL)
(progn (if (and (> 2control:reading ?2control:guardline_low)
(< ?control:reading ?control:guardline_high)) then
(assert (Equipment_Recovery Control_System 2control))
(put ?control:status NORMAL)
else
(if (> ?*mission_time* (+ ?control:statuschange_time
?control:recovery time)) then
(put ?control:status INOPERATIVE)
(assert (Equipment_Failure Control_ System 2control))
(send ?control put-status INOPERATIVE)))))

(retract ?check))

>
[

("3

®

'3

[/ ]

®

[/ ]

T e
T
[
g .
[

Q

(o4

[}
h
[
[o]

w

[}

o]

2]

0

s}
.s-
0
-

[ 8
=]
Q
[¢]
My Se

(defrule Equipment_Status_Assessment

(declare (salience ?*sysmonitor_saliencet*))

(or (Equipment_Critical ?class ?Equipment)
(Equipment_Failure ?class ?Equipment))
(Equipment_Mission_Essential ?essential)

?assessflag<- (Equipment-Status-Assess)

?statusflag <- (Equipment_Status ?status)

=>

(bind ?*sysmonitor_salience* (+ ?*sysmonitor_salience* 1))

(decision-change System Monitor Equipment_Status_Assessment

Assessment Assessing Status )
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(bind ?*QtyEquipment_failed* (+ ?*QtyEquipment_failed* 1))
(if (or (> ?*QtyEquipment_failed* 2)
(eq ?essential yes)) then

(retract ?statusflagq)
(assert (Equipment_Status major_failure))

(assert (propagate change))

else
(retract ?statusflag)
(assert (Equipment_Status equipment_critical))
(assert (propagate change )))
(retract ?assessflaqg))

(defrule Equipment_Recovery
(declare (salience ?*sysmonitor_salience?*))

(Equipment_Recovery ?class ?equipment)

=>
(decision-change System Monitor Equipment_Recovery Assessment
resume_normal_equip_operations)
(bind ?*QtyEquipment_failed* (- ?*QtyEquipment_failed* 1))
(if (eq ?*QtyEquipment_failed* 0) then

(assert (Equipment_Status normal))
(assert (propagate change))))

;:; attempts to shift to alternate power source if one avail
places failed power source in the INOPERATIVE mode

{defrule Power_Source_Critical

(Power_Source failure)
(Equipment_critical ?equip_class ?Equipment)

(Alternate_Power_ Source ?source)

->
(decision-change System Monitor Power_Source_Critical Low

shift-power-source )
(Call-Guidance-Command shift-powersource-to ?source )
(send (symbol-to-instance-name ?source)
put-Equipment_Supported ?Equipment)
(do-for-instance ((?Battery POWER_SOURCE))
(eq ?Battery:Equipment_Supported ?Equipment)

(send (symbol-to-instance-name ?Battery) put-status INOPERATIVE)))
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H Sonar Failure H
;; Determines if sonar failure is critical. If the ;
;; depth sonar fails, the mission will be aborted.
;2> In any case, the ef:act must be reported to the ;
23 1nte:mediate level assessment tule. H

(defrule Sonar_Failure
(Equipment_Failure Sonar ?some_sonar)
=>
(decision-change System Monitor Sonar_Failure Low
Pass_info_to_Equip Assessor)

(if (eq ?some_sonar DEPTH-sonar) then
(assert (Equipment_Mission_Essential yes))
(assert (Equipment-Status-Assess))
else
(assert (Equipment_Mission_Essential no))
(assert (Equipment-Status-Assess))))

(defrule Sonar_Critical
(Equipment_Critical Sonar ?some_sonar)
=->
(decision-change System Monitor Sonar_Critical low
Pass_info_to_Equip_Assessor)

(if (eq ?some_sonar DEPTH-sonar) then
(assert (Equipment_Mission_Essential yes))
(assert (Equipment-Status-Assess))
else
(assert (Equipment_Mission Essential no))
(assert (Equipment-Status-Assess))))

;::; Attempts to shift to back up nav instrument when one goes
302 critical

(defrule Navigation_Instrument_Failure
(Equipment_critical Navigation_Instrument ?instrument)
=->
(decision-change System Monitor Navigation_Instrument_Failure Low
Shift_to_Redundant_Equipment)
(do-for-instance ((?other-instrument NAVIGATION_INSTRUMENT))
(and (eq ?other-instrument:Redundant_Equipment
?instrument)
(eq ?other-instrument:status normal))
(Call-Guidance-Command Shift-NavInstrument-to ?other-instrument))
(assert (Equipment_ Mission_Essential no))
(assert (Equipment-Status-Assess)))
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(defrule Control_System Critical
(Equipment_Critical Control_System ?control)

->

(decision-change System Monitor Control_System Critical Low

Assesses any control system failure except for
Hover-Thrusters as a failure of mission-essential

(i.e., vital) equipment

Pass_info_to_Equip_Status_Assessor)
(if (neg ?control Hover-Thrusters) then
(assert (Equipment_Mission_Essential yes))

(assert (Equipment-Status-Assess))))

(defrule Control_System Failure
(Equipment_Failure Control_System 2control)

=>

(decision-change System Monitor Control_System Failure Low

Pass_info_to_Equip_ Assessor)
(if (eq ?control Hover-Thrusters) then
(assert (Equipment_Mission_Essential no))

else

(assert (Equipment_Mission_Essential yes))
(assert (Equipment-Status-Assess))))
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$IIiINiiiiiiviiiiiiiiiiiiiiiiiiiiiiiiiieiiiiii:
Environmental Sensor Failure

These have the least effect on the Equipment

functional area. The pressure transducer is the

only environmental sensor considered vital

(defrule Environmental_Sensox_Failure
(Equipment_Failure Environmental Sensor ?sensor)

=

(decision-change System Monitor Environmental_ Sensor_Failure

" We N ws “e %,
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Low Pass_info_to_Equip_Status_Assessor)
(if (neq ?sensor PressureTransducer) then
(assert (Equipment_Mission_Essential no))

else

(assert (Equipment_Mission_Essential yes))

(assert (Equipment-Status-Assess))))
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This is the abstraction of the Environmental world.
Environmental out of limits readings cause the environment
to degrade, but mostly are isolated phenomena. If a
collective degradation occurs, this signifies a negative
trend in the environment and reason for AUV to abort the

::::; Programmer : WP Wilkinson

;:;; System : CLIPS 5.0

;::: Program : AUV Mission Executor "SKIPPER"
:::: Functional Area : Environment

::: Latest Revision : 04 Sep 91

;: Description
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; mission.

:
$IRIININNIINIIIIININIIVIIIIIIIILNIIIIIGIIIIIIIIIINIZSIGSTS
:::: Global Variables Pertaining to Environment i:
FIIRFIIINIIIIIIIINIIIINIIININEIIIIEIINIis

(defglobal ?*environment_salience* = 100

?*QtyEnvironProblems* - 0

?*sea_state_thresh* = 3)
FPFiFIIIINIINIINICIIIVINI IR0 80
: Environmental Assessor 2
BIPIIINIIiIIINI023030330300322002038000333303300083030333030003330%3
: This assumes that a single environment problem is not critical
’

in itself. Rather, an aggregate of out-of-range sensor readings
indicate a large environmental phenomena such as a storm. In
such a situation, the environmental situation would be
severely degraded, causing AUV to abort the mission
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(defrule Environment_ Assessor
(declare (salience ?*environment_saliencet*))
?cond <- (Adverse_condition ?type ?equipment)
?current <- (Environmental Status ?status)

. -)>
(retract ?cond)
. (decision-change Environmental world Environment_Assessor

Assessment determine_if environment_status_is_hazard)
(bind ?*QtyEnvironProblems* ( + ?*QtyEnvironProblems* 1))
(if (>= ?*QtyEnvironProblems* 3) then
(retract ?current) ‘
(assert (Environmental Status major_deviation))
(assert {propagate change))))
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(defrule Environment_Assessor_Equipment
?equip <~ (Equipment_Failure Environ_Sensor ?sensor)
?environ_status <- (Environmental_Status ?status)
=>
(decision-change Environmental_ world Environment_Assessor
Assessment determine if environment_equipfailure_is hazard)
(bind ?*QtyEnvironProblems* ( + ?*QtyEnvironProblems* 1))
(1f (>= ?2*QtyEnvironProblems* 3) then
(retract ?environ_status)
(assert (Environmental Status major_deviation))
(assert (propagate change)))
(retract ?equip))
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Environmental World Rules
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This handles environmental sensor readings which are
out of limits. Low level actions to guidance are
immediately generated while the command to collectively
assess the environment is made
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(defrule attitude_sensor
(AMdverse_condition attitude ?equipment)
=->
(decision-change Environmental world attitude_sensor
Low_level dive_to_avoid ocean_turbulence)
(Call-Guidance-Command dive-24 planes)
(assert (Assess_Environment)))

{(defrule pressure_sensor
(Adverse_condition pressure ?equipment)
=>
(decision-change Environmental_ world pressure_sensor Low_level
ascend_to_avoid_pressure_limits)
(Call-Guidance-Command ascend-10 planes)
(assert (Assess_Environment)))
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(defrule temperature sensor
(Adverse_condition temperature ?equipment)
->
(decision-change Environmental world temperature_sensor Low_level
determine_if temp_change_indicates_navigation_error)
{Call-Guidance-Command Verify-Location navigation))
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1. SCENARIO 1

CLIPS> (watch statistics)

CLIPS> (batch upload.bat)

CLIPS> (close)

FALSE

CLIPS> (Clear)

CLIPS> (load skipper.clp)

Defining defglobal: *start_time*

Defining defglobal: *mission_time*

Defining defglobal: *mission_degradation_time*
Defining defglobal: *recovery_time*
Defining defglobal: *Time_Interval*
Defining defglobal: *emergency_salience*
Defining defglobal: *mission_critical_power*
Deﬁmng defglobal: ‘Funcnmal _arca_failure*

Defining deffunction: copy-old-instance

Defining defclass block DECISION

Defining deffunction: decision-change

Defining defclass block EVENT_SCHEDULE
Defining defmessage-handler execute-event primary in class EVENT_SCHEDULE.
Defining defclass block POSTURE

Defining deffunction: Call-Guidance-Waypoint
Defining deffunction: Call-Guidance-Command
Defining deffunction: Replan-Route

Defining deffunction: Abort-Route

Defining definstances block STARTING_DECISIONS
Defining deffacts: Starting_Facts

Defining defrule: initialize-vehicle +j

Defining defrule: upload +j+j+j+j

Defining defrule: Mission_Timer +j

Defining defrule: timer-manager +j

Defining defrule: Document_Mission +j
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Defining defrule: event_schedule_manager +j

Defining deffunction: Total-Functional-Problems

Defining defrule: Overall_Mission_Assessor +j+j+j+j+j+j+j
Defining defrule: Continue-Mission_unrestricted +j+j+j+j+j
Defining defrule: Continue-mission_restricted-update +j+j
Defining defrule: Continue_mission_restricted_initial =j
Defining defrule: Abort_Mission +j+j+j

Defining deffunction: display-status

Defining defrule: show_status_board =j+j+j+j+j+j+j+j+j
CLIPS> (load maneuvering.clp)

Defining defglobal: *mancuver_salience*

Defining defglobal: *obstacle_ref*

Defining defglobal: *obstacle_clearance_time*

Defining defglobal: *avoidance_time*

Defining defglobal: *mancuverability_factor*

Defining defclass block OBSTACLE

Defining defmessage-handler obstacle-change primary in class OBSTACLE.
Defining defrule: Mancuvering_Status_Assessment +j+j+j
Defining defrule: Mancuvering_Status_Assessment_long_range +j+j+j
Defining defrule: Maneuvering_Equipment_Failure +j
Defining defrule: emergency_manecuver_evaluation +j

+j

Defining defrule: Assess_Avoidance_Maneuver +j+j
Defining defrule: emergency-evasive-maneuver-ascend +§

+

+j

+

Defining defrule: emergency-evasive-mancuver-leftascend +j
Defining defrule: emergency-evasive-maneuver-left +j
Defining defrule: emergency-evasive-maneuver-rightascend +j
Defining defrule: emergency-evasive-maneuver-right +j
Defining defrule: emergency-evasive-maneuver-stopascend +j
+

Defining defrule: abnormal_surface +j+j+j

=juj+

Defining defrule: abnormal_ascent =j=ij+j

Defining defrule: abnormal_dive =j+j+j

=joj+j

Defining defrule: Obstacle_Detection_Normal_Limits +j+
Defining defrule: Obstacle_Update =j+j

Defining defrule: Collective_Obstacle_Assessment +j
CLIPS> (load navigation.clp)
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DeﬁmngdefchssblockPOWBR_SOURCB

Defining defmessage-handler get-reading after in class POWER_SOURCE.
Defining defclass block SONAR

Defining defmessage-handler get-reading after in class SONAR.

Defining defclass block NA VIGATION_INSTRUMENT

Defining defmessage-handler get-reading after in class NAVIGATION_INSTRUMENT.
Defining defclass block CONTROL_SYSTEM

Defining defmessage-handler get-reading after in class CONTROL_SYSTEM.
Defining defmessage-handler get-response after in class CONTROL_SYSTEM.
Defining defciass block ENVIRON_SENSORS

Defining defmessage-handler get-reading after in class ENVIRON_SENSORS.
Defining defmessage-handler get-environmental_reading after in class
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ENVIRON_SENSORS.

Defining defclass block MISSION_EQUIPMENT
Defining defmessage-handler get-reading after in class MISSION_EQUIPMENT.
Defining definstances block Sysmonitor-Bank

Defining defrule: monitor_health_continuously +j
Defining defrule: check_critical_equipmeant +)

m defrule: Equipment_Status_Assessment +j+j+j+j
+rititi

Defining defrule: Equipment_Recovery +j ]

Defining defrule: Power_Source_Critical +j+j+)

Defining defrule: Sonar_Failure +j

Defining defrule: Sonar_Critical +j

Defining defrule: Navigation_Instrument_Failure +j
Defining defrule: Control_System_Critical +j

Defining defrule: Control_System_Failure +j

Defining defrule: Environmental_Sensor_Failure +j
CLIPS> (load environment.clp)

Defining defglobal: *eavironment_salience*

Defining defglobal: *QtyEnvironProblems*

Defining defglobal: *sea_state_thresh*

Defining defrule: Environment_Assessor +j+j

Defining defrule: Environment_Assessor_Equipment +j+j
Defining defrule: attitude_sensor +j

Defining defrule: pressure_sensor +j

Defining defrule: temperature_sensor +j

CLIPS> (reset)

CLIPS> (run)

Welcome to the MISSION EXECUTOR DEMO

WAYPOINTS: All scenarios take place over the same set
of INITIAL waypoint coordinates.

EQUIPMENT: All equipment is simulated in the event file
Objects are creased for each onboard equipment

SITUATIONS: All situations are also simulated in the event
file. For instance, an obstacle detection is
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listed and this simulases the Obstacle Avoidance
the interface to the Executor .

[ ]

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
ime : 0.232

>>>>>>>>>>>> Decision <<<<ccc<c<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 0407

>>>>>>>>>>>> Decision <<<<<cc<cc<e<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
ime : 0569

| Skipper's Display |

TIME in min_secs 0:00
Ovenall Mission Status >>>> Continue_Unrestricted <<<<
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Manuevering_Status : unrestricted
Equipment_Status : normal
Navigation_Status : within_tolerance
Environment_status : normal
Spec_Mission_status: feasible

| evolution : transit
| depth-status : dive

SRERBRB RS bR kbbb bbbk bk kb kkbbkhk kbbb bkhhkkkkrgkbkkd

Event Number: 1

Description : passing_waypoint

Time : 10.000
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 10.207

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 10.380

149




>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 10.543

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

| evolution : transit
| depth-status : dive
|

| Last Command to Guidance : mark_on_top
| enroute-waypoint : 2

| Obstacles |

| Direction | Proximity |Type |

| EQUIPMENT DOWN I

SERREREERRBEREERERRREREE SRR RR RSk e bR R bR RERRkRE

Event Number : 2

Description : passing_waypoint
Time : 38.000
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>>>>>>>>>>>> Decision <<<<<<c<<<<<
type : Navigation
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rnule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 38.268

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 38444

>>>>>>>>>>>> Decision <<<<ccc<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 38.607

TIME in min_secs 0:38

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal :

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

| evolution msxt
l depth-mms

ILmConmndemdance tmrk on_mp
| enroute-waypoint : 3
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! EQUIPMENT DOWN |
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Event Number: 3

Description : passing_waypoint
Time : 107.000 '
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>>>>>>>>>>>> Decision <c<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 107.276

>>>>>>>>>>>> Decision <<<<<<<<<<g<<
type : Navigation

rule : Waypoint_DistanceTime_Check

level : Low_assessment

action : determine_if_need_to_increase_speed
time : 107.456

>>5>>>>>>>>> Decision <<<<<<<<<<<<

type : Navigation

rule : Navigation_Assessment

level : Assessment

action : determine_Nav_Status_and_pass_to_Overall_Mission_assessor
time : 107.620

>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : Navigation *
rule : Waypoint_monitor

level : Low_assessment *
action : assess_next_waypoint_and_sequence

time : 107.781
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| Skipper’s Display |

TIME in min_secs 1:47

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolcrance
Environment_status : normal

Spec_Mission_status: feasible

|l evolution : transit

| depth-status : no-depth-change
[
| Last Command to Guidance : mark_on_top
| enroute-waypoint 1 4

| Obstacles |

| Direction | Proximity |Type |

]

I EQUIPMENT DOWN I
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Event Number: 4

Description : passing_waypoint

Time ¢ 125.000

kbbb hhhhhhkkkhkkhbkkkhkkdkhkkbbkgbhhkRhhhkhdRk

>>>>>>>>>>>> Pecision <<<<<c<<<<c<<«
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 125.232

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation
rule : Waypoint_DistanceTime_Check
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level : Low_assessment
action : determine_if_need_to_increase_speed
time : 125415

| Skipper's Display I

TIME in min_secs 2:05

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

(evolution : transit
| depth-status : no-depth-change

| Last Command to Guidance : Increase-Speed
| enroute-waypoint : 4
I Obstacles |

L e e

| Direction | Proximity | Type |

L 2 e

I EQUIPMENT DOWN I

>>>>>>>>>>>> Decision <<<<<<cc<c<c<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 126.153

RN R RSB ASREREBRESRER R R AR AR RARERER R Rk RREREEER

Event Number: §

Description : passing_waypoint

Time :  145.000
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>>>>>>>>>>>> Decision <<<<ccc<c<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 145.203

>>>>>>>>>>>> Decision <<<<<<<<<c<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 145.388

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 145.551

e e e s st e e i o

| Skipper’s Display I

TIME in min_secs 2:25

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

| Last Command to Guidance : mark_on_top
| enroute-waypoint : 6

| Obstacles |
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Event Number: 6

Description : passing_waypoint

Time : 167.000

Stk hbbhhbkhkbb kbbb kb b bhkhkbd bk bk khhhhhkikkkkk

>>>>>>>>>>>> Decision <<<<<<<c<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 167.201

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 167.391

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 167.554

Overall Mission Status >>>> Continue_Unrestricted <<<<
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Manuevering_Status : unrestricted
Equipment_Status : normal
Navigation_Status : within_tolerance
Environment_status : normal
Spec_Mission_status: feasible

| evolution : specmiss
| depth-status : ascent
|

| Last Command to Guidance : mark_on_top
| enroute-waypoint 2 17
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Event Number : 7

Description : passing_waypoint

Time ¢ 175.000
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 175.227

>>>>>>>>>>>> Decision <<<<<<<g<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 175418
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 175.583

'l'lME in min_secs 2: 55
Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted
Equipment_Status : normal
Navigation_Status : within_tolerance
Environment_status : normal
Spec_Mission_status: feasible

| evolution msit

IMMs

Il.astCommand medance mark on_top
| enroute-waypoint : 8

| Obstacles |

| Direction | Proxumty lType I

I EQUIPMENT DOWN I
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Event Number: 8

Description : passing_waypoint
Time 1 196.000
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation
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rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 196.219

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check

level : Low_assessment

action : determine_if_need_to_increase_speed
time : 196415

>>>>>>>>>>>> Decision <<<<<<<<<<<«
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 196.580

TIME in min_secs 3 16

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal .

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

| evolution : transit

Idepth-status surface

| - — .
ILutCommand medance mark on_top
| enroute-waypoint : 9




| EQUIPMENT DOWN |
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Event Number : 9

Description : passing_waypoint
Time ¢ 210.000

S8 0805 0080020002200k h s e ES0 S SR s ERS

>>>>>Made it 10 Goal<<<<cc<
At time : 210.0360000000001
18368 rules fired Run time is 212.2829999999994 seconds
86.51187330120663 rules per second
16 mean number of facts (20 maximum)
2 mean number of activations (5 maximum)
CLIPS> (dribble-off)
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2. SCENARIO 2

CLIPS> (watch statistics)
CLIPS> (batch upload.bat)
CLIPS> (close)

FALSE

CLIPS> (Clear)

CLIPS> (load skipper.clp)
CLIPS> (load mancuvering.clp)
CLIPS> (load navigation.clp)
CLIPS> (load sensor.clp)
CLIPS> (load environment.clp)
CLIPS> (reset)

CLIPS> (run)

Welcome to the MISSION EXECUTOR DEMO

WAYPOINTS: All scenarios take place over the same set
of INITIAL waypoint coordinates.

EQUIPMENT: All equipment is simulated in the event file
Objects are created for each onboard equipment

SITUATIONS: All situations are also simulated in the event
file. For instance, an obstacle detection is
listed and this simulates the Obstacle Avoidance
DecisionMaker passing this information through
the interface to the Executor .

SCENARIO CHOICES: select number <Rer>
1 Waypoint_Hopping Only (transit)

2 Obstacle Avoidance

3 Vehicle Control System Failure

4 Obstacles and Environment Problems

S Equipment Failures

6 Exit the Simulator
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthCompaerison
level : Low_assessment

action : determine_type_of_depth_change
time : 0.247

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rale : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 0423

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 0.586

TIMB muin_secs 0’(!)
Owverall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Status : normal
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| Direction | Proximity |Type |

| EQUIPMENT DOWN |

S0 e a3 000 bbb kbbb bbb bbb bbb kb ki bbbk kbbb bk bk bk

Event Number: 1

Description : passing_waypoint_1
Time ¢ 10.000

S22 s 0k h bbb bR s s bR s bbbk bbbtk bbbtk hkhkhkkkb bk hkkE

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 10.193

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment _

action : determine_if_need_to_increase_speed
time : 10.368

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 10.531
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TIME muin_sec: 0'10

Ovenall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

| enroute-waypoint : 2

LAt 2 22t 2 g il g T Pt i S it

Event Number : 2

Description : passing_waypoint_2
Time : 20.000
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>>>>>>>>>>>> Decision <<<<<<cccc<c<
type : Navigation

nile : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 20.627
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>>>>>>>>>>>> Decision <<<<<<<<<<<«
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : desermine_if_need_to_increase_speed
time : 20.804

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 20.968

TIMB in min_secs 0'20

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

| evolution : transit
ldepth -status : dive

IhstOommmdtondance mark on_top
| enroute-waypoint : 3

| Obsuclu |

165




2583308050088 S0 RS S eSS e S d SRS s Soh et kb S

Event Number: 3

Description : obstacles_close_aboard

Time : 27.000

23232 ehs bbbk bbb b kbbbt b bbb bbbbhhbbbbkss kil

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Maneuvering
rule : emergency-evasive-mancuver-ascend
level : Low-supervisory-level

'l'lMEmmm_secs 027

Overall Mission Status >>>> Continue_Unrestricted <<<<

Manuevering Status : unrestricted
Equipment_Status : normal
Navigation_Status : within_tolerance
Environment_status : normal
Spec_Mission_status: feasible

| evolution : transit
| depth-mms dive
| e

| enroute-waypoint : 3

| Last Coulmnd o Gmdanoe asoend-""safe _depth*
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>>>>>>>>>>>> Decision <<<<<c<<c<<<
type : Navigation

rule : depth_sounding_deviation_shortrng
level : low_supervisory

action : avoid_possible_shoaling

time : 27.968

| Skipper's Display |

TIME in min_secs 0:27

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

| evolution : transit
| depth-status : dive
|
| Last Command to Guidance : ascend-?*safe_depth*
| enroute-waypoint : 3

Proximity | Type |

I EQUIPMENT DOWN I

>>>>>>>>>>>> Decision <<<<<<<c<c<c<<<

type : Maneuvering

rule : emergency_maneuver_evaluation

level : assessment

action : assess_emergency_obstacle_avoidance_maneuvers
time : 28.704
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Event Number: 4

Description : passing_waypoint_3

Time ¢ 35.000

Shkbhhhkbbhhhhbhh kb kkhkkbbkhkkhkdbddkdikohidkdkdkkkkdk

>>>>>>>>>>>> Pecision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 35201

>>>>>>>>>>>> Decision <<<<c<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 35.380

Skipper's Display I

TIME in min_secs 0:35

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

| evolution : transit
| depth-status : dive
I

| Last Command to Guidance : Increase-Speed
| enroute-waypoint : 3
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I EQUIPMENT DOWN |

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 36.133

ShhEehbbhbbhhkkkhkkkkkbhkhbkkkkkkkdkhkkhkhhkkgkgkl
Event Number: §

Description : obstacle_detected_at_normal_range

Time . 41.000
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Event Number: 6

Description : obstacle_classified_as_new

Time . 41.000

deeakafeafe sk ode e b e ol e o o ol e 2 ae o e o oo e e o ae b e e e e e ok ale sl el el afe e ke e e e

>>>>>>>>>>>> Decision <<<<<<<<<<<«

type : Maneuvering

rule : Obstacle_detection_Normal_Limits
level : Low_assessment

action : classify_normal_range_obstacle_as_new
time : 41439

>>>>>>>>>>>> Decision <<<<<c<<<<<<

type : Maneuvering

rule : Collective_Obstacle_Assessment

level : Low_assessment

action : assess_whether_presents_a_collision_danger_and_tumn
time : 41.650
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>>>>>>>>>>>> Decision <<<<<<<c<<<<<
type : Maneuvering

rule : Maneuvering Status_Assessment
level : maneuvering-assessment

action : change-overall-maneuvering-status
time : 41817

>>>>>>>>>>>> Pecigion <<<<<<c<<<<<
type : Overall_Mission

rule : Overall_Mission_Assessor

level : High

. action : ContinueMission_with_restrictions

time : 41988

>>>>5>>>>>>>> Decision <<<<<c<<<<<<
type : Overall_Mission
rule : Continue_mission_restricted_initial

level : Assessment
action : Note-time-of-status-change
time : 42.149

SRBRBERESE R e RS b RBRh b h kb kbbb hkhhkhhkbhgkkkkkkkkk

Event Number: 7

Description : obstacle_detected_at_normal_range

Time : 41.000
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Event Number : 8

Description : obstacle_classified_as_new

Time : 41.000

S22 00 LSS RSO R L LR SRR EEEEERER RS S SR ESRRRE R R hh kiR
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>>>>>>>>>>>> Decision <<<<c<ccc<c<<

type : Maneuvering

rule : Obstacle_detection_Normal_Limits
level : Low_assessment

action : classify_normal_range_obstacle_as_new
time : 42.786

Shkbkkh bbb bbhkbkbkb kb hbkkb bk kkkkhkbk kb kkkkk

Event Number: 9

Description : obstacle_detected_at_normal_range

Time . 45.000
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Event Number: 10

Description : obstacle_classified_as_new

Time : 45.000
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>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : Maneuvering

rule : Obstacle_detection_Normal_Limits
level : Low_assessment

action : classify_normal_range_obstacle_as_new
time : 45453
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Event Number: 11

Description : obstacle_detected_at_normal_range

Time :  50.000
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Event Number: 12
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Description : obstacle_classified_as_new

Time . 50.000
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>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : Maneuvering

rule : Obstacle_detection_Normal_Limits
level : Low_assessment

action : classify_normal_range_obstacle_as_new
time : 50452

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Maneuvering

rule : Maneuvering_Status_Assessment
Jevel . maneuvering-assessment

action : change-overall-maneuvering-status
time : 57.079

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Overall_Mission
rule : Overall_Mission_Assessor

level : High
action : Abort_mission
time : 57.251

>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : Overall_Mission

rule : Abort_Mission

level : Low

action : lock_status_and_replan_route_to_abort_rendezvous
time : 57407

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
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time : 57.718

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 57.891

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

Jevel : Low_assessment

action : assess_next_waypoint_and_sequence
time : 58.055

I Skipper's Display I

TIME in min_secs 0:57

Overall Mission Status >>>> Abort_mission <<<<
Manuevering_Status : severely_restricted
Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal
Spec_Mission_status: feasible

| evolution : abort_transit
l depth—mtus no-depth-change

I Lw Oomand to Gmdancc mark_on_top
| enroute-waypoint S |




| EQUIPMENT DOWN |
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Event Number: 13

Description : mark_on_abort_waypoint

Time . 77.000
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 77.199

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
jevel : Low_assessment

action : determine_if_need_to_increase_speed
time : 77.375

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 77.53

‘I'IMB hnn_secs 1:17
Overall Mission Status »»Abat_maon <<<<




Environment_status : normal
Spec_Mission_status: feasible

| evolution : abort_transit
| depth-status : ascent

| — T O I R O R R R R EEREEEEEEEEEEEIE————
| Last Command to Guidance : transiting_to_abort_rendezvous

| enroute-waypoint : 2

| EQUIPMENT DOWN |

S22 beb bbb b kb e bRk bk bRk bbkh kg Rk h bk k kR RkgkE

Event Number: 14

Description : mark_on_abort_waypoint
Time : 98.000
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArmrival-DepthComparison
level : Low_:. yessment

action : determine_type_of_depth_change
time : 98.230

>>>>>>>>>>>> Decision <c<<ccccccc<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 98.406
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence

time : 98.570

| Skipper’s Display |

TIME in min_secs 1:38
Ovenall Mission Status >>>> Abort_mission <<<<
Manuevering_Status : severely_restricted
Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal
Spec_Mission_status: feasible

| evolution : abort_transit
| depth-status : ascent

| = pea———
| Last Command to Guidance : underway
| enroute-waypoint : 3

TN I I I T - e e e e e ey ettt e e
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Event Number: 15

Description : mark_on_abort_waypoint
Time : 112.000

S252ebe e bb Rk bbb bka Rk ks bbbk b kbbb b bh bbbk kb kb bk

>>>>>>>>>>>> Decision <<<<<<<<c<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 112.246

>>>>>>>>>>>> Decision <<<<<<gcc<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 112425

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 112,589

| Skipper's Display l
TIME in min_secs 1:52
Overall Mission Status >>>> Abort_mission <<<<
Manuevering_Status : severely_restricted
Equipment_Status : normal
Navigation_Status : within_tolerance
Eavironment_status : normal
Spec_Mission_status: feasible
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| Last Command to Guidance : mark_on_top
| enroute-waypoint 1 4

| Obstacles |

| EQUIPMENT DOWN I

SEEEEREE LSS RBREREEEE kS hRb 2 Sk R b E kR hhbbkbE R bk kb RbE

Event Number : 16

Description : mark_on_abort_waypoint

Time : 125.000

SeesR e Rbhhtb bbbk bbRhhhhh kb kkbkkbbkhbkkkkgkpkkd

>>>>>Made it to Goal<<<<<<<
At time : 125.0339999999997
10135 rules fired Run time is 128.4349999999995 seconds
78.91151165959467 rules per second
22 mean number of facts (30 maximum)
2 mean number of activations (8 maximum)
CLIPS> (exit)
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3. SCENARIO 3

CLIPS> (watch statistics)
CLIPS:> (batch upload.bat)
CLIPS> (close)

FALSE

CLIPS> (clear)

CLIPS> (load skipper.clp)
CLIPS> (load maneuvering.clp)
CLIPS> (load navigation.clp)
CLIPS> (load sensor.clp)
CLIPS> (load environment.clp)
CLIPS> (reset)

CLIPS> (run)

Welcome to the MISSION EXECUTOR DEMO

WAYPOINTS: All scenarios take place over the same set
of INITIAL waypoint coordinates.

EQUIPMENT: All equipment is simulated in the event file
Objects are created for each onboard equipment

SITUATIONS: All situations are also simulated in the event
file. For instance, an obstacle detection is
listed and this simulates the Obstacle Avoidance
DecisionMaker passing this information through
the interface to the Executor .

SCENARIO CHOICES: select number <Ret>
1 Waypoint_Hopping Only (transit)

2 Obstacle Avoidance

3 Vehicle Control System Failure

4 Obstacles and Environment Problems

S Equipment Failures

6 Exit the Simulator
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 0.203

S>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 0.380

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 0.543

TIME in min_secs 0:00

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasibie

| evolution : transit
| depth-status : dive
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| Last Command to Guidance : underway
| enroute-waypoint |

| Obstacles |

| Direction | Proximity |Type |

1

ShEbbd ks kRhkkkhhbkhhkbkhhhbkbkgk kb hbkkkbkikkkkg

Event Number: 1

Description : passing_waypoint_1

Time : 10.000

a0 2 o o s e o s e o o afe e o o s e o ae s e o o o sl e a2 o ke o o afe sl s o o e e e o afe e ak e o

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 10.246

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check

level : Low_assessment

action : determine_if_need_to_increase_speed
time : 10.420

>>>>>>>>>>>> Decision <<<<<c<<c<c<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 10.583
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| Skipper’s Display |

S~ e P S e e s e e et ———

TIME in min_secs 0:10
Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

| evolution : transit
| depth-status : dive
|
| Last Command to Guidance : mark_on_top
| enroute-waypoint : 2

| Obstacles I

| Direction | Proximity | Type I

| EQUIPMENT DOWN |
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Event Number: 2

Description : passing_waypoint_2

Time :  20.000

Skkbhhkbbbhbbkhkkbhhhdk Rk kkdbdbdgokgdkkidfiidkkk

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 20.616
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 20.793

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 20957

! Skipper's Display |

TIME in min_secs 0:20

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

| evolution : transit
| depth-status : dive
|

| Last Command to Guidance : mark_on_top
| enroute-waypoint : 3
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Event Number: 3

Description : passing_waypoint_3
Time : 27.000

SRSREEEEEBRBEREEEEEEEERESE SRS SRR bR Sk ekE bk EkkkkEk

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 27.201

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 27.383

TIME in min_secs 0~27 '

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

| evolution : transit
Idepth—ms dive

leOomnmdtondmee lncrease-Speed
| enroute-waypoint : 3

| Obstacles |
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| Direction | Proximity |Type |

! EQUIPMENT DOWN |

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 28.122

2hbbhRbephhhbhbhkbbkhkkkkkkkkhbbkkkhkkhkhhkhkkkkkd

Event Number: 4

Description : Plane_controls_failure

Time ¢ 35.000

SR RnR Rt REEREBREhr kbR kEkkrkbkhkkkhhkkkkkkkkhkk

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Maneuvering

rule : Maneuvering_Status_Assessment
level : maneuvering-assessment

action : change-overall-maneuvering-status
time : 35.243 ~

>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : System_Monitor
rule : Control_System_Failure

level : Low
action : Pass_info_to_Equip_Assessor
time : 35.409

>>>>>>>>>>>> Decision <<<<<<cccce<
type : System_Monitor

rule : Equipment_Status_Assessment
level : Assessment

action : Assessing_Status
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time : 35.571

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Overall_Mission
rule : Overall_Mission_Assessor

level : High
action : Abort_mission
time : 35.740

>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : Overall_Mission

rule : Abort_Mission

level : Low

action : lock_status_and_replan_route_to_abort_rendezvous
time : 35.898

>>>>> Shutting Down for Dynamic Recovery <<<

>>>>> Transponder will function for 2 hours <<<

2931 rulesfired  Run time is 41.71299999999974 seconds
70.26586435883343 rules per second

16 mean number of facts (27 maximum)

2 mean number of activations (11 maximum)

CLIPS> (dribble-off)
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4. SCENARIO 4

CLIPS> (watch statistics)
CLIPS> (batch upload.bat)
CLIPS> (close)

FALSE

CLIPS> (Clear)

CLIPS> (load skipper.clp)
CLIPS> (load maneuvering.clp)
CLIPS> (load navigation.clp)
CLIPS> (load seasor.clp)
CLIPS> (load environment.clp)
CLIPS> (reset)

CLIPS> (run)

Welcome to the MISSION EXECUTOR DEMO

WAYPOINTS: All scenarios take place over the same set
of INITIAL waypoint coordinates.

EQUIPMENT: All equipment is simulated in the event file
Objects are created for each onboard equipment

SITUATIONS: All situations are also simulated in the event
file. For instance, an obstacle detection is
listed and this simulates the Obstacle Avoidance
DecisionMaker passing this information through
the interface to the Executor .

SCENARIO CHOICES: select number <Ret>
1 Wayponm_l-loppmg Only (transit)

2 Obstacle Avoidance

3 Vehicle Control System Failure

4 Obstacles and Environment Problems

5 Equipment Failures

6 Exit the Simulator
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>>>>>>>>>>>> Decision <<<<<<<<<<<«
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 0.217

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 0.392

>>>>>>>>>>>> Decision <<<<<<<<<cc<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 0.557

'l'lME in min_secs 0‘00
Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted
Equipment_Status : normal
Navigation_Status : within_tolerance
Environment_status : normal

pec_Mission_status: feasible

| evolution : transit

ldepth-m dive
lunCommdemdanee. underway
| enroute-waypoint 0 1
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Event Number: 1

Description : passing_waypoint

Time : 10.000

S0 hhRhhkhkhhkbbkhkk e khhgkkkpgkieokgkkkikkkikkkikkikhkik

>>>>>>>>>>>> Decision <<<<<<<cc<c<c<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 10214

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 10.388

>>>>>>>>>>>> Decision <<<<<cccc<<<
type : Navigation

rule : Waypoint_monitor

Jevel : Low_assessment

action : assess_next_waypoint_and_sequence
time : 10.552
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TIME in min_secs 0:10

Overall Mission Status >>>> Continue_Unrestricted <<<<

Manuevering_Status : unrestricted
Equipment_Status : normal
Navigation_Status : within_tolerance
Environment_status : normal
pec_Mission_status: feasible

| evolution : transit
| depth-status : dive
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Event Number: 2

Description : obstacle_detected_at_normal_range

Time ¢ 27.000
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Event Number: 3

Description : obstacle_classified_as_new

Time . 27.000
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type :@ Maneuvering

rule : Obstacle detecuon_Normal_htmts
level : Low_assessment

action : classify_normal_range_obstacle_as_new
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time : 27.428

>>>>>>>>>>>> Decision <<<<<<<<c<<<<
type : Maneuvering
rule : Collective_Obstacle_Assessment

level : Low_assessment
action : assess_whether_presents_a_collision_danger_and_turn
. time : 27.624

S22ekbb bbb bkhbk bbbk kb bk bkkkkkkkbbbkhbhkky kg

Event Number : 4

Description : obstacle_detected_at_normal_range

Time : 37.000

BeRekhrdbhkikbkkhbkkhkhhkkkhkkkhkhkkhkhbkkkkhkkkhkd

ShksbbbkkbhkkbhkkkhkkkkhkhkbkkkkbkhkhkikkkhkkikiRrd

Event Number: §

Description : obstacle_detected_at_normal_range

Time : 37.000

sesfeabed e sl ale o o e e sl e i e o o ol ol oo o oo e e sl e e il e e o s ke ok e o e e sl ol e e ke

>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : Maneuvering

rule : Obstacle_detection_Normal_Limits
level : Low_assessment

action : classify_normal_range_obstacle_as_new
time : 37475

SRR RRRERRR R SRS SRR kbbb Rk ReReh e h bk bk e kb kR kkdk

. Event Number: 6
n Description : obstacle_classified_as_new
Time :  40.000

SRR NRR SRR R RS EERRERRREREREERRR SRR RES e bR s eREk
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Event Number: 7

Description : obstacle_update_previous_detect

Time . 40.000
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>>>>>>>>>>>> Decision <<<<<<<<<<«<

type : Maneuvering

rule : Obstacle_Update

level : Low_assessment

action : update_obstacle_status:rangebearing,collision-danger
time : 40.843

SREhbkehRbbhkkdkikdkicdeokigbpiodkoikiedok ikl dokkok

Event Number : 8

Description : sea_temp_does_not_match_exp_reading

Time . 50.000

Skhhhgkrhkkbhkhkkbkhkhkkbkddkfokkdkkdokkdigrg ik

>>>>>>>>>>>> Pecision <<<<<<<<<<<<

type : Environmental_world

rule : Environment_Assessor

level : Assessment :

action : determine_if_environment_status_is_hazard
time : 50.256
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Event Number: 9

Description : pressure_out_of_limits

Time :  60.000

PP R BRSSP R R0 bbb S ee R e b b e e e ERe bbbtk stts s
>>>>>>>>>>>> Decision €<<<<<<c<<<<<

type : Environmental_world
rule : Environment_Assessor
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level : Assessment
action : determine_if_environment_status_is_hazard
time : 60.750

S0 e eSS e e b bbb b kbbb kb bk b kb bk kb kbbb kb kS

Event Number: 10

Description : gyro_indicates_abnormal_sea_turbulence

Time : 65.000

BRESRESEESER eSS 22 b ke bR e EShk kbbb bbbk kkkkbkktkkkd

>>>>>>>>>>>> Decision <<<<<<c<<<<<

type : Environmental_world

rule : Environment_Assessor

level : Assessment

action : determine_if_environment_status_is_hazard
time : 65.244

>>>>>>>>>>>> Decision <<<<<<<<<c<<<
type : Overall_Mission
rule : Overall_Mission_Assessor

level : High
action : Abort_mission
time : 65411

>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : Overall_Mission

rule : Abort_Mission

level : Low

action : lock_status_and_replan_route_to_abort_rendezvous
time : 65.569

>>>>>>>>>>>> Decision <<<<<<c<cc<<<<
type : Navigation

rule : WaypointArmrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 65.867




>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 66.040

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 66.203

[ Skipper's Display |

s S e S S s B e S e e e e T e S e

TIME in min_secs 1:05

Overall Mission Status >>>> Abort_mission <<<<
Manuevering_Status : unrestricted
Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : major_deviation
Spec_Mission_status: feasible

| evolution : abort_transit

| depth-status : no-depth-change

' o
| Last Command to Guidance : transiting_to_abort_rendezvous
| enroute-waypoint : 1

| Obstacles |
e —

| Direction | Proximity |Type |

82.0 far floating

356.0 far floating
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| EQUIPMENT DOWN I

>>>>>>>> SeaTempSensor<<<<<<<<
>>>>>>>> SeaStateGyro<<<<<<<<
>>>>>>>> PressureTransducer<<<<<<<<

SBebhbbbhbbhkkkkbkkkkhkgkkkhkhkbkkkkhkhkkkkkhkkkgk

Event Number: 11

Description : passing_waypoint

Time ¢ 95.000

Shkkhbpkkbkbhbhibkkkkbkkkkbkkkkhhkkhkkhkhkhkkkikkkd

>>>>>>>>>>>> Decision <<<<cc<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 95.225

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 95.399

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 95.565

| Shppet’s Dlsplay |

'I'IME in min_secs 1:35
Overall Mission Status >>>> Abort_mission <<<<
Manuevering_Status : unrestricted
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Equipment_Status : normal
Navigation_Status : within_tolerance
Environment_status : major_deviation
Spec_Mission_status: feasible

| evolution : abort_transit
| depth-status : ascent

I
| Last Command to Guidance : underway *
| enroute-waypoint : 2

I EQUIPMENT DOWN I

>>>>>>>> SeaTempSensor<<<<<<<<
>>>>>>>> SeaStateGyro<<<<<<<<
>>>>>>>> PressureTransducer<<<<<<<<

Wbl ais e e afe e abe sk sl o ol o e e e b o o o o o o e e e e e e e o ol o sl o sl sl e sl e ke e o o

Event Number: 12

Description : passing_waypoint
Time : 115.000

kAR hEERbb b kb hbbhhbhkkkkkkiokhkkkddddgkdkdokdkkkdk

>>>>>>>>>>>> Decision <<<<<<<<<c<<<

type : Navigation .
rule : WaypointArrival-DepthComparison

level : Low_assessment _
action : determine_type_of_depth_change ‘
time : 115.240
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>>>>>>>>>>>> Decision <<<<<c<ec<k<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 115417

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 115.582

| Skipper's Display !

TIME in min_secs 1:55

Overall Mission Status >>>> Abort_mission <<<<
Manuevering_Status : unrestricted
Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : major_deviation
Spec_Mission_status: feasible

| evolution : abort_transit
| depth-status : ascent
|

| Last Command to Guidance : mark_on_top
| enroute-waypoint 13

| Obstacles |

| Direction | Proximity |Type I

82.0 far floating
356.0 far floating
I EQUIPMENT DOWN I
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>>>>>>>> SeaTempSensor<<<<<<<<
>>>>>>>> SeaStateGyro<<<<<<<<
>>>>>>>> PressureTransducer<<<<<<<<

S EReR e e e bbb REhkbk bR bbb bhkkk kb bk khhkhkkhkkd

Event Number : 13

Description : passing_waypoint

Time : 126.000

shkkkkkbshbbbkkkkbghbkkhkbkkkkbbbkhhkhkbkbkbhkhkkkty

>>>>5>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 126.214

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 126.392

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 126.557

TIME in min_secs 2:06

Overall Mission Status >>>> Abort_mission <<<<
Manuevering_Status : unrestricted
Equipment_Status : normal

Navigation_Status : within_tolerance
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Environment_status : major_deviation
Spec_Mission_status: feasible

| evolution : abort_transit
| depth-status : surface

| e — . - .
| Last Command to Guidance : mark_on_top
| enroute-waypoint : 4

| Obstacles |

| Direction | Proximity | Type |

82.0 far floating
356.0 far floating
! EQUIPMENT DOWN |

>>>>>>>> SeaTempSensor<<<<<<<<
>>>>>>>> SeaStateGyro<<<<<<<<
>>>>>>>> PressureTransducer<<<<<<<<

Mo afe ol e 2 e a2 a2 2 a3 e o e o e e o e e o a3 o e o e s e o o obe o o e afe e o o ke ol ok

Event Number: 14

Description : Goal_arrival

Time . 148.000

hkghhhkkkpkkkgkikkpikkkkiikkgiikkkikkkkgkikkbkikk

>>>>>Made it to Goal<<<<<<<
At time : 148.0519999999997
13301 rules fired Run time is 150.860999999999 seconds
88.16725329939541 rules per second
20 mean number of facts (27 maximum)
2 mean number of activations (7 maximum)
CLIPS> (dribble-off)
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5. SCENARIO §

CLIPS> (watch statistics)
CLIPS> (batch upload.bat)
CLIPS> (close)

FALSE

CLIPS> (clear)

CLIPS> (load skipper.clp)
CLIPS> (load maneuvering.clp)
DCLIPS> (load navigation.clp)
DCLIPS> (load sensor.clp)
CLIPS> (load environment.clp)

J
CLIPS> (reset)
CLIPS> (run)

Welcome to the MISSION EXECUTOR DEMO

WAYPOINTS: All scenarios take place over the same set
of INITIAL waypoint coordinates.

EQUIPMENT: All equipment is simulated in the event file
Objects are created for each onboard equipment

SITUATIONS: All situations are also simulated in the event
file. For instance, an obstacle detection is
listed and this simulates the Obstacle Avoidance
DecisionMaker passing this information through
the interface to the Executor .

SCENARIO CHOICES: select number <Ret>
1 Waypoint_Hopping Only (transit)

2 Obstacle Avoidance

3 Vehicle Control System Failure

4 Obstacles and Environment Problems

5 Equipment Failures




6 Exit the Simulator

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 0.202

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 0.376

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 0539

TIME in min_secs 0:00

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Eavironment_status : normal

Spec_Mission_status: feasible

levolution : tramsit

201




bt e Ll Ll Sl LD D2 1T T 2 D2 T ey

Event Number: 1

Description : passing waypoint_1

Time : 10.000

SRR SRR AL AR LS RS EE LR UL SR AR LR RS e R RS ERES

>>>>>>>>>>>> Decision <<<<<<<<<<c<<
type : Navigation

rule : WaypointArmrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change

time : 10.216

>>>>>>>>>>>> Decision <<<<c<c<c<c<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 10.390

>>>>>>>>>>>> Decision <<<<c<<<c<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 10.553




I o Shpper's stphy | |

'l'IMB in min_secs 0:10

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

levolution : transit
Idepth status : dive
| TR——— .
lLutCommandtondance mark_on_top
| enroute-waypoint 12

SRR R e RE SR RSB bbb e b S b kbbb khkh kbR kbbbl hbhRbd

Event Number: 2

Description : passing_waypoint_2

Time . 20.000

SRR ERESEE RSB A e R b eSS b0b bbb bbb bbbttt b bbbk bhkkd

>>>>>>>>>>>> Decision <<<<ccccc<<<
type : Navigation

rule : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
tme : 20.634
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check
level : Low_assessment

action : determine_if_need_to_increase_speed
time : 20811

>>>>>>>>>>>> Decision <<<<<cc<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 20.975

I Shpper's Dlsplay |

TIMB in min_secs 0:20

Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted

Equipment_Status : normal

Navigation_Status : within_tolerance
Environment_status : normal

Spec_Mission_status: feasible

levolution : transit

Idepth—mtus dive

| e - - —— .

| Last Canmandemdance mark_on_| mp
| enroute-waypoint :3
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Event Number : 3

Description : passing_waypoint_3

Time ¢ 27.000

Shbkddesht kbt bbbk kb kbbb kR bk kkh ks bbbk bk hbkdE

>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : Navigation

rule : WaypointArrival-DepthComparison

level : Low_assessment

action : determine_type_of_depth_change

time : 27.209

>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : Navigation

rule : Waypoint_DistanceTime_Check

level : Low_assessment

action : determine_if_need_to_increase_speed

time : 27.389

'I'IME in min_secs 027
Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering_Status : unrestricted
Equipment_Status : normal
Navigation_Status : within_tolerance
Environment_status : normal
Spec_Mission_status: feasible

levolution : transit
| depth-status dive
|

| enroute-waypoint

ILmCommandmondance hmase Speed
: 3




>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action: assess_next_waypoint_and_sequence
time : 28.129

ShSEE S RS R bbb S eb kSRRSO R b hbkEbh kbbbt hbkEd
Event Number: 4

Description : sonar_has-failure-reading

Time : 35.000

PSRN e SRS 2SR e e b kSRS bbbk ek ke bRk b kbbb kRl

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : System_Monitor
rule : Sonar_Failure

level : Low
action : Pass_info_to_Equip_Assessor
time : 35.300

>>>>>>>>>>>> Decision <<<<<<<<c<<<
type : System_Monitor

rule : Equipment_Status_Assessment
level : Assessment

action : Assessing_Status

time : 35463

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Ovenll_Mission

rule : Ovenall_Mission_Assessor

level : High

action : ContinueMission_with_restrictions
time : 35.630




>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Overall_Mission

rule : Continue_mission_restricted_initial
level : Assessment

action : Note-time-of-status-change

time : 35.791

Seksbdtntdbkbhdhthbb kbbb bhkkkhbhhkhbkkkkkkkkg)

Event Number: 5

Description : passing_waypoint_4

Time . 55.000

ShReeb ek bbhbsbhbhkbhkbkhh bbbk kbbb kkhkkkkkkkk

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rile : WaypointArrival-DepthComparison
level : Low_assessment

action : determine_type_of_depth_change
time : 55.236

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_DistanceTime_Check

level : Low_assessment

action : determine_if_need_to_increase_speed
time : 55419

| Skipper's Display |

TIME in min_secs 0:55
Overall Mission Status >>>> Continue_with_Restrictions <<<<
Manuevering_Statuz : unrestricted

Equipment_Status : equipment_critical

Navigation_Status : within_tolerance

Environment_status : normal

Spec_Mission_status: feasible

levolution : transit

Ty
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| depth-status : no-depth-change

[ ——

| Last Command to Guidance : Increase-Speed
| enroute-waypoint 1 4

| EQUIPMENT DOWN |

>>>>>>>> FWD-sonar<<<<<<<<

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation

rule : Waypoint_monitor

level : Low_assessment

action : assess_next_waypoint_and_sequence
time : 56.202

PSR eEE bR kbbb d bkttt bb kbbbt kkkkkkkkRbkkkRhkkn

Event Number: 6

Description : sonar_has_failure-reading

Time : 65.000

S22 e e b bS e e BRE R bk ke bR SRS ke bk kbR bbb b h e bk pk ki

>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : System_Monitor
rule : Sonar_Critical

level : low
action : Pass_info_to_Equip_Assessor
time : 65.265

>>>>>>>>>>>> Decision <<<<<c<<<<<<
type : System_Monitor

rule : Equipment_Status_Assessment
level : Assessment

action : Assessing_Status




time : 65.426

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Overall_Mission
rule : Overall_Mission_Assessor

level : High
action : ContinueMission_with_restrictions
{ time : 65.596

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Overall_Mission

rule : Continue_mission_restricted_initial
level : Assessment

action : Note-time-of-status-change

time : 65.754

Shbhbkkbkkbbkkbhbkhkbkkhhkkthk kbbb bbbkt hhkE Rk

Event Number: 7

Description : rudder_has_failure_reading

Time : 68.000

bE 2 2 22t 2t 2 i f g it it gl g

>>>>>>>>>>>> Decision <<<<<<c<<<<<
type : Maneuvering

rule : Maneuvering Status_Assessment
level : maneuvering-assessment

action : change-overall-maneuvering-status
time : 68.303

>3>>>>>>>>>> Decision €<<<<<<<<<<<

4 type : Overall_Mission

rule : Overall_Mission_Assessor
) level : High

action : Abort_mission

time : 68.470




>>>>>>>>>>>> Decision <<<<<<<ccc<<

type : Overall_Mission

rule : Abort_Mission

level : Low

action : lock_status_and_repian_route_to_abort_rendezvous
time : 68.633

>>>>> Shutting Down for Dynamic Recovery <<<

>>>>> Transponder will function for 2 hours <<<

5761 rules firrd  Run time is 72.20900000000074 seconds
79.78229860543618 rules per second

18 mean number of facts (29 maximum)

2 mean number of activations (12 maximum)

CLIPS> (dribble-off)
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